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Abstract— Non-prehensile manipulation, such as pushing,
is an important function for robots to move objects and is
sometimes preferred as an alternative to grasping. However, due
to unknown frictional forces, pushing has been proven a difficult
task for robots. We explore the use of reinforcement learning to
train a robot to robustly push an object. In order to deal with
the sample complexity of training such a method, we train the
pushing policy in simulation and then transfer this policy to the
real world. In order to ease the transfer from simulation, we
propose to use modularity to separate the learned policy from
the raw inputs and outputs; rather than training “end-to-end,”
we decompose our system into modules and train only a subset
of these modules in simulation. We further demonstrate that
we can incorporate prior knowledge about the task into the
state space and the reward function to speed up convergence.
Finally, we introduce ”reward guiding” to modify the reward
function and further reduce the training time. We demonstrate,
in both simulation and real-world experiments, that such an
approach can be used to reliably push an object from many
initial positions and orientations.

I. INTRODUCTION

Non-prehensile manipulation, such as pushing, can be
used by robots to move or to rearrange objects. Compared
to grasping, pushing may be easier or even necessary in
certain cases. For example, pushing is especially important
for moving objects that are too big or too heavy to grasp [1].
Pushing can also be used to move multiple objects at once,
such as when clearing space on a cluttered table, in which
the robot can sweep multiple objects out of the way in a
single stroke [2]. Additionally, if a robot needs to grasp an
object, it may need to first push the object to a more ideal
position or orientation before grasping [3], [4], [5].

However, pushing is a challenging task for robots due
to frictional forces that are difficult to model [6], [7], [8],
[9]. Many of the assumptions that are commonly made for
analyzing pushing motions have been shown to not always
hold in practice. For example, the frictional forces involved
can be non-uniform, time-varying, anisotropic, and deviating
in other ways from the assumptions that are usually made in
pushing models [10].

In this work, we explore the use of reinforcement learning
for robot pushing tasks. Reinforcement learning has shown
to be a powerful technique for environments with unknown
dynamics or for tasks with complex dynamics that are
difficult to explicitly optimize over. Reinforcement learning
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Fig. 1: After training a policy to perform a pushing task
in the simulator, we transfer the policy directly to the real
world. We decompose the system into the modules of a
pose estimator, a policy, and a position controller. This
decomposition leads to a robust transfer of the policy from
simulation to the real world.

has been used for tasks such as learning to swing a bat,
perform locomotion, stand up from a sitting position, drive
a car, and many other tasks [11], [12], [13], [14], [15], [16].

However, reinforcement learning methods, especially
those using a neural network to represent the policy, can often
be difficult to use in the real world due to the large number of
samples required for learning. This is especially true for deep
policy gradient methods; such methods have demonstrated
impressive results in simulation, but their use in the real
world is limited by their large sample complexity [17], [13],
[14], [16]. Based on the results that have been demonstrated
in simulation, we are motivated to explore whether such
methods can also be made to work in the real world.

We propose an approach for dealing with the sample
complexity by training a policy in simulation, where many
training samples can be quickly generated. We then transfer
the trained policy into the real world. However, such an
approach is challenging due to mismatch between the sim-
ulation and the real world: images in simulation may differ
from images in the real world, and the system dynamics in
simulation can differ from the dynamics in the real world.

We show that deep reinforcement learning methods can be
trained in simulation and then transferred to the real world by
using the principle of modularity. In contrast to most deep
reinforcement learning approaches which train the system
end-to-end (e.g. from pixels to torques) [13], [16], [18], we
break the problem into multiple separate pieces. Our system
has a module that maps from image inputs to object pose,
from object pose to target joint positions, and from target



joint positions to motor torques. As shown in Figure 1, we
train only the middle module in simulation and then transfer
this module to the real-world. The surrounding modules are
designed in both simulation and in the real-world to enable
ease of transfer.

Further, we show that we can incorporate our prior knowl-
edge about the task into the system through modifications to
the state space and to the reward function. This is again
in contrast to the traditional deep reinforcement learning
approach in which minimal prior knowledge of the robot
task is incorporated into the learning procedure [13], [14],
[15], [16].

Finally, we formulate a new approach for varying the
reward function over iterations of the optimization, which
we refer to as “reward guiding.” We show that our approach
leads to faster convergence (compared to other approaches
such as reward shaping) without modifying the optimal
policy asymptotically. Our simulation and real-world experi-
ments illustrate the success of our approach for robot pushing
tasks.

II. RELATED WORK

Non-prehensile Manipulation. Pushing, a form of non-
prehensile manipulation, has been studied in robotics for
many years. An early analysis showed that one can compute
the direction of rotation of the pushed object, based on
the direction of the friction cone and the pushing force
compared to the location of the center of friction [3]. Others
have modeled frictional forces using the notion of a limit
surface [6], [7], [8], [9].

However, all these approaches make a number of assump-
tions about the friction that recent experiments have shown
do not always hold in practice [10]. For example, a recent
study has shown that, for certain materials, the friction of an
object can vary greatly over the object surface. The friction
can also vary over time (it becomes lower as the object
is repeatedly pushed and the surface is smoothed) and it
can vary based on the object speed and the direction of
pushing [10]. This study showed that most of the models that
are normally used for estimating friction, such as the prin-
ciple of maximum-power inequality [6] and the ellipsoidal
approximation of a limit surface [8], do not always hold in
practice, resulting in pushing motions that differ from those
predicted by these models.

Learning a Dynamics Model. Some previous efforts
have been made to deal with the uncertainties in friction by
learning how to push objects [19], [20], [21], [22], [23], [18].
These approaches typically involve first learning a dynamics
model for how an object will respond when pushed, and then
choosing actions based on this dynamics model. However,
as discussed above, the dynamics model for pushing can
itself be fairly complex, sometimes involving a non-uniform
friction distribution over the object surface [10]. Thus, learn-
ing an accurate dynamics model is itself a challenge, and
once the dynamics model is learned, finding an optimal
policy for pushing can be similarly complex. In practice, a
number of approximations are usually made to the dynamics

model to make it easier to learn and to optimize over (such
as assuming linear-Gaussian dynamics as a function of the
state [18]), but these approximations might lead to a reduced
task accuracy [24]. In contrast, we explore whether we
can directly learn a policy for pushing using reinforcement
learning.

Policy Transfer. Due to the long training times required
to learn complex policies using reinforcement learning al-
gorithms, we explore whether we can train such policies in
simulation and then transfer the trained policies to the real
world. Most of previous work for policy transfer involves
policies that do not involve object interaction [25], [26], [27],
[28]. We explore whether we can transfer policies that use
non-prehensile manipulation (i.e. pushing).

Furthermore, many transfer learning techniques require
further training in the real-world to adapt the policy to the
real-world dynamics [29]. However, such an approach does
not work well when training complex policies represented by
neural networks trained using policy gradient reinforcement
learning algorithms, which require many samples for the
policy to converge. We explore whether we can train policies
in simulation and transfer them to the real-world directly,
without further time-consuming fine-tuning required.

III. METHODS

A. Overview

Our approach to object pushing aims at training a policy in
simulation and transferring it to the real-world. The task that
the robot has to perform consists of pushing a block placed
on a table, starting from any initial position and orientation,
to a certain goal position (for this work, we are not concerned
with the final orientation of the block).

In order to train the policy quickly in simulation, we
explore how we can incorporate prior knowledge into the
learning algorithm by modifying the input state and the re-
ward function. This is in contrast to many current approaches
for deep reinforcement learning which attempt to train the
system end-to-end, from pixels to torques, without any prior
knowledge of the task. Additionally, we explore using the
idea of modularity to enable the policy to easily transfer from
simulation to the real-world. These ideas will be discussed
in further detail below.

B. Modularity

Rather than learn a policy end-to-end, from pixels to
torques, we use the idea of modularity to decompose the
policy into multiple pieces, as shown in Figure 2. Each piece
can be designed separately and then composed together to
obtain the entire system. We show that decomposing the
policy in this manner allows us to easily transfer a policy
trained in simulation to the real world.

1) Image to Object Pose: The input to our system is
an image containing the object to be pushed. In order to
push this object correctly, we need to obtain the object
position. To achieve this, we use AR tags, which can be
easily identified and used to determine the object pose.
An alternative approach would be to train an object pose
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Fig. 2: Our system for robot pushing. The center module
(“Trained Policy”) is trained in simulation and transferred to
the real world. The other modules are designed to create the
desired inputs and outputs for ease of transfer.

detector, using one of various image algorithms for such
tasks [30], [31], [32], [33]. When we train the policy in
simulation, we directly use the ground-truth object position,
obtained via our simulator.

Separating the pose estimation from the rest of the system
is crucial for transferring policies from simulation to the
real world. The images rendered in simulation have a very
different appearance than the images from the real world.
Although some efforts have been made to increase the
appearance variation of the simulated images [34], such an
approach is still somewhat fragile, as differences between the
simulated and real-world images can still lead to unexpected
behavior.

2) Object Pose to Robot Joint Angles: Next, we learn a
policy that maps from the object pose to the target robot
position. We learn this policy entirely in simulation. The
policy is trained using a reinforcement learning algorithm
(TRPO with GAE) [13], [14], which allows the robot to
learn a fairly complex policy for object pushing. However,
because this policy is separated from the raw image inputs
and the raw torque outputs by the surrounding modules (see
Figure 2), the policy easily transfers from simulation to the
real-world without any fine-tuning required.

3) Robot Joint Angles to Robot Torque: Rather than
outputting the raw torques, the policy that we train in
simulation outputs the target robot joint angles. We then
use a PD controller to map from the target position to the
robot torques. A similar approach has been used for reaching,
leaning, balancing, and other tasks that do not involve object
interaction [25], [26], [27], [28]. We demonstrate that such
an approach can also be used for tasks that involve ob-
ject manipulation, specifically non-prehensile manipulation
(pushing).

C. Input State

A common approach for deep reinforcement learning is
to train a policy using the minimal information necessary
to perform the task. For example, the minimal information
required for the robot pushing task is the robot joint angles
and velocities; the object position, orientation, and velocity;
and the goal position (i.e. the location to which the robot
must push the object). Using only this information and
sufficient training time, the robot is able to learn a policy
to successively achieve the task.

However, for many robotics tasks, the algorithm designer
might have prior knowledge about how the task should be

Fig. 3: We add additional inputs to our observation based on
the vector from the end-effector to the object, oee−ob ject , and
the vector from the object to the goal, oob ject−goal .

performed. For example, in the case of object pushing, it
is clear that the robot must first move its arm towards the
object, and then it must move the object towards the goal.
We thus simplify the task faced by the learning algorithm
by adding additional features to our state-space: the three-
dimensional vector from the robot end-effector to the object,
and the three-dimensional vector from the object to the goal
position, for a total of six additional features (See Figure 3).
We show that adding these additional features significantly
speeds up the time required to learn an optimal policy.

D. Reward Function

The goal of the robot is to push the object to the goal
location. Thus, the minimal reward function necessary to
complete this task is the negative distance from the object
to the goal. However, the robot will have a difficult time
learning a policy under this reward function, since most
random actions that the robot takes will not have any affect
on this reward (since most random actions will not cause the
robot to interact with the object, and hence will not affect
the distance between the object and the goal).

Thus, in order to decrease the training time, we add
additional terms to the reward function to guide the policy in
a direction to maximize the objective. For example, we add
a term to the reward corresponding to the negative distance
from the robot end-effector to the object, to encourage the
robot to move its end-effector near to the object. We also
add a term based on the angle between the end-effector,
the object, and the goal, to encourage the robot to move
its end-effector such that these three points lie on a straight
line; specifically, we add cos(oee−ob ject ,oob ject−goal), where
oee−ob ject is the vector from the robot end-effector to the
object and oob ject−goal is the vector from the object to the
goal.

E. Reward Guiding

Modifying the reward function by adding additional terms
can help to decrease the time to convergence, but it has the
downside of modifying the learned policy. It has been shown
that, in order for the optimal policy to be unchanged, then
the reward function can only be modified in the following



way:

r(s,a,s′) = r0(s,a,s′)+ γφ(s′)−φ(s) (1)

where r(s,a,s′) is the new reward function when transition-
ing from state s to state s′ after taking action a, r0(s,a,s′)
is the original reward function, γ is the discount factor, and
φ(s) is a real-valued function over states [35].

Although such a modification has been shown to not affect
the optimal policy, unfortunately it also does not always
speed up the training time as much as one would like. The
reason for this is simple: the effect of modifying the reward
function in this way is equivalent to simply subtracting a
baseline [36]. We can see this if we accumulate the reward
function to compute the return. The original, unmodified
return is given by

R0 =
∞

∑
k=0

γ
kr0,k (2)

where r0,k is the unmodified reward r0 received on the kth
timestep. Then the modified return is given by [36]

R′ =
∞

∑
k=0

γ
k(r0,k + γφ(sk+1)−φ(sk)) (3)

=
∞

∑
k=0

γ
ir0,k +

∞

∑
k=0

γ
k+1

φ(sk+1)−
∞

∑
k=0

γ
k
φ(sk)) (4)

= R0 +
∞

∑
i=1

γ
k
φ(sk)−

(
φ(s0)+

∞

∑
k=1

γ
k
φ(sk)

)
(5)

= R0−φ(s0) (6)
(7)

where sk is the state encountered at the kth timestep. Thus
the return is only changed by subtracting a baseline which
is a function of the initial state s0. It has been shown that
subtracting a baseline, especially an optimal baseline, can
help reduce the variance of the estimator [37], [12]. However,
this is unfortunately a somewhat restricted way to modify the
reward and we show that this can lead to slower convergence
than might be possible.

Instead, we set the reward-shaping discount factor from
Equation 1 to γ = γ(i), in which the discount factor can vary
over the iterations of the optimization. Let γM be the discount
factor from the MDP. We then increase the reward-shaping
discount factor over later iterations of the optimization as:

γ(i) = γM(1− exp(−i/τ)) (8)

where γ(0) = 0 and γ(i) → γM as i → ∞. Thus, at con-
vergence, γ(i)→ γM and our time-varying reward shaping
method approaches the original reward shaping formulation
from Eq. 1, and thus the optimal policy at convergence
is unchanged (the proof from the original reward shaping
formulation [35] applies at convergence). However, by vary-
ing γ(i) we are able to achieve a more flexible form of
reward shaping that leads to faster convergence. We name
this approach “reward guiding”.

In this formulation, the discount factor γ(i) can be viewed
as a variance reduction parameter. A similar perspective of

the discount factor is taken in previous work [14], in which
the discount factor of the MDP is viewed as a variance
reduction parameter compared to the undiscounted MDP.

IV. IMPLEMENTATION DETAILS

Our neural network maps from the input state to target
robot joint positions, which are defined as changes in angle
from the current joint positions. The network is defined by 3
hidden layers followed by the output layer. Each hidden layer
has 64 nodes, with tanh non-linearities between each hidden
layer. The network is implemented in Theano [38]. For the
reinforcement learning algorithm, we use TRPO [13] and
Generalized Advantage Estimation (GAE) [14] with a linear
baseline using the implementation from rllab [17]. We use the
default parameters from TRPO in rllab for our optimization,
and we train the policy for 15,000 iterations with a batch size
of 50,000 timesteps and 150 timesteps per episode. We use
a discount factor of γ = 0.95, a KL-divergence constraint of
δKL = 0.01, and a λ = 0.98 from GAE. We train the policy
in simulation using the Mujoco [39] simulator.

We use a position controller to map the target joint
angles output by the network to motor torques. For ensuring
good transfer from simulation to reality, we found that it is
important that the controller gains are set low enough such
that the controller does not overshoot. In simulation, we
allow enough time between actions to allow the controller
reach the target position with an error smaller than 0.01
radians.

On the real PR2, we detect the position of the ob-
ject using the Robot Operating System (ROS) package
ar track alvar. For the position controller, we use the
integrated position controller of the PR2, from the ROS
package pr2 controller manager.

V. RESULTS

The experiments were designed to evaluate the impact of
our contributions, both of how to learn the policy learning
in simulation and how to transfer the policy from simulation
to reality. In particular we seek to answer the following
questions:
• Can we incorporate prior task knowledge into the obser-

vation space or reward function to increase the sampling
efficiency or improve task performance?

• Can reward guiding improve the learning time without
asymptotically modifying the MDP?

• How does a learning-based approach to non-prehensile
manipulation compare to that of a hard-coded baseline?

• Can modularity be used to transfer a policy from
simulation to the real-world while maintaining a similar
level of performance?

We analyze our method on simulation in Sections V-A,
V-B, and V-C. And We show the results on real world in
Section V-D. In addition to the below experiments, videos
of our results are also available online1.

1https://goo.gl/fehPWw

https://goo.gl/fehPWw


A. Simulation Training

1) Prior knowledge in the state space: We analyze the
effect of modifying the state space on the training time. In
a typical deep reinforcement learning setup, the system only
receives the minimal state space as input. In this case, that
would include the robot joint angles and velocities; the object
position, orientation, and velocity; and the goal position to
which the robot must push the object. We call this minimal
observation obase.

However, we show that we can augment the state space
to improve the convergence rate. We define oee−ob ject as the
3-dimensional vector pointing from the robot end-effector to
the object, and we define oob ject−goal as the 3-dimensional
vector pointing from the object to the goal. Figure 4 shows
that adding these terms to the state space reduces the training
time needed for the robot to learn to perform the task.

Final	distance	from	
block	to	goal	(m)	

Number	of	training	itera7ons	

obase,	oee-object	
obase	

obase,		 							oobject-goal	
obase,	oee-object,	oobject-goal	
	

Fig. 4: We use prior knowledge about the task to modify the
state space. Our results shown that adding prior knowledge
can lead to faster convergence compared to just using the
original state space.

2) Prior knowledge in the reward function: Next, we
analyze the effect of modifying the reward function has on
training time. We explore the contribution of each of the
following reward terms:

(i) rob j,goal =−d(ob j,goal)
(ii) rangle = cos(oee−ob ject ,oob ject−goal)

(iii) ree,ob j =−d(ee,ob j)
The first term, −d(ob j,goal), measures the negative distance
between the object and the goal (the position to which the
object must be pushed). This term must be included in order
to encourage the robot to push the object towards the goal.

The second term, cos(oee−ob ject ,oob ject−goal), encourages
the robot’s end-effector to approach the object from the
appropriate angle. The term oee−ob ject is the vector from the
robot end-effector to the object, and oob ject−goal is the vector
from the object to the goal. By measuring the cosine between
these vectors, we encourage the end-effector, the object, and
the goal to lie along a straight line. However, the weight on
this term is relatively small because this term is only intended
to guide the robot end-effector to the approximately correct
position. For accurate pushing, the robot may occasionally
need to move its end-effector to a different location that
deviates from this line.

The third term, −d(ee,ob j), measures the negative dis-
tance from the robot end-effector to the object. This term will
encourage the robot end-effector to move near the object. If
the robot is not given this term, then it will initially perform
actions that do not interact with the object. The robot would

then not see any change to the distance between the block
and the goal, and the robot would not receive any feedback
that allows it to discover whether its actions are useful. By
adding this term, the robot’s initial actions are guided towards
the object. However, the weight on this term is again small
because this is not the primary objective; the robot has to
move the end-effector around, and occasionally away from
the block, in order to re-position and push the block in
different directions.

We explore the effect of each of these terms by investi-
gating the following reward functions:

(i) r1 = rob j,goal
(ii) r2 = rob j,goal +w1 rangle

(iii) r3 = rob j,goal +w2 ree,ob j
(iv) r4 = rob j,goal +w1 rangle +w2 ree,ob j

where w1 and w2 are weighting factors on each of the reward
terms.

The results are shown in Figure 5. In the plot, we have
named r1 = baseline, r2 = baseline + angle, r3 = baseline +
ee-distance, and r4 = baseline + angle + ee-distance. We can
see that, if only the minimum reward function is specified, as
in r1, then the robot makes very little progress in learning,
since as mentioned, the robot’s initial random actions will
not usually affect the distance from the block to the goal.
Adding in only the angle term (as in r2) also does not have
much effect. If we encourage the robot to move its end-
effector towards the object (as in r3), then we see a significant
improvement in the training time. Combining all three terms
leads to the best convergence; once the robot is encouraged
to move towards the block, encouraging the robot to move
and place its end-effector at the correct angle further helps
guide the robot towards the correct pushing behavior.

Baseline	+	angle	
Baseline	

Baseline	+	ee-distance	
Baseline	+	angle	+		
				ee-distance	

Final	distance	from	
block	to	goal	(m)	

Number	of	training	itera:ons	

Fig. 5: We use prior knowledge about the task to modify the
reward function. Our results show that adding prior knowl-
edge can lead to significantly faster convergence compared
to just using the original reward function.

B. Reward guiding

Finally, we analyze the increase in sample efficiency of
using our proposed annealing reward shaping, which we refer
to as “reward guiding,” instead of the conventional reward
shaping method from Ng, et. al. [35].

For guiding we use the reward rob j,goal , and φ(s) =
w1 rangle +w2 ree,ob j as potential function. This results in a
faster learning (as show in section V-A.2), and at the same
time we optimize the original objective function asymptoti-
cally. Then our reward can be written as:



rguiding = rob j,goal(s′)+ γ(i)[w1 rangle +w2 ree,ob j](s′)

−[w1 rangle +w2 ree,ob j](s)

Fig. 6: We measure the performance over iterations of reward
guiding, shaping, [35] and learning without shaping (i.e. just
adding extra reward terms). Our results show that reward
guiding can lead to faster convergence compared to just using
reward shaping or learning without shaping.

Figure 6 shows the comparison between using reward
guiding, reward shaping, and modifying the reward without
proper shaping by adding additional reward terms (as in r4
from the previous section).

The results show that reward guiding has the best perfor-
mance. Reward guiding accomplishes the same final distance
from the block to the goal as shaping after 40% of the
total number iterations. Ng, et. al. [35] proved that reward
shaping does not affect the optimal policy. Similarly, reward
guiding is guaranteed to have the same final optimal policy,
but simply adding extra reward terms (as in r4) would not.

C. Baseline Comparison

In this section, we show the need for learning-based
methods for non-prehensile manipulation, especially in do-
mains where the robot needs to push objects from arbitrary
initial positions and orientations. To demonstrate the need for
learning in such scenarios, we compared our performance
to that of a non-learning based (“hard-coded”) baseline
procedure. In our “hard-coded baseline”, at the beginning
of each episode, a gripper is placed on the opposite side of
the object from the goal. The gripper then pushes the object
along the vector that goes from the center of the object to
the goal until the distance from the object to the goal stops
decreasing.

We compare the performance of our learning-based ap-
proach to that of the baseline, testing both methods in
simulation (the real-world experiments of our method are
desribed in Section V-D). In these experiments, the goal is
fixed, and the object is placed in every point of a grid of size
0.4 m × 0.25 m, with a resolution of 0.01 m, and the object
orientation is sampled from a random uniform distribution
on [−π,π].

Figure 7 shows the final distance between the object and
the goal from each starting position. In it we can see that
our method is robust to varying initial positions. On the
other hand, the hard-coded baseline has much worse accuracy
for some initial object positions. A histogram of the final

Fig. 7: Heatmap of the final distance between the object and
the goal. The axes denote the relative initial position of the
object with respect the goal. The final distance is thresholded
to a maximum value of 0.1 m. Red indicates that the final
distance from the object to the goal is higher than 0.1m,
whereas purple indicates a 0 distance. Left: Our method.
Right: Baseline. (Best viewed in color).

Fig. 8: Histogram of the final distance between the object
and the goal. Thresholded to a maximum value of 0.25 m.
Left: Our method. Right: Baseline.

distances between the block and the goal can be found in
Figure 8. The poor performance displayed by the baseline is
due to the variability in the environment, specifically in the
orientation of the object relative to the goal position.

Fig. 9: Final distance between the object and the goal with
respect the orientation of the object in the plane of the table.
Left: Our method. Right: Baseline.

Figure 9 shows the final distance between the block and
the goal as a function of the initial orientation of the object.
The orientation is defined as the angle between longest side
of the block and the x-axis.

The baseline fails to push the object for some initial
orientations since the gripper slides off the side of the block
instead of pushing it closer to goal. In contrast to our
learning-based approach, the baseline is unable to recover
from such situations. The sharp decrease in the final distance
around 1.1 radians is due to the orientation at which the
gripper starts pushing against the corner or against the
shortest side of the block. To view some examples of the
baseline failure cases, see the online video2.

In contrast, our learned policy is robust to changes of

2https://goo.gl/fehPWw

https://goo.gl/fehPWw


Fig. 10: Trajectories of the center of the object while being
pushed. The axes denote the relative position of the object
with respect to the goal. The red square identifies the goal,
which is located at the origin. Left: Our method. Right:
Baseline. (Best viewed in color).

orientation, as seen in Figure 9 (left). The learned policy is
able to perform complex pushing trajectories, correcting the
trajectory and recovering the object if it has pushed the block
too far. A visualization of the pushing trajectories produced
by our method, compared to those of the baseline, are shown
in Figure 10.

D. Real-World Pushing

In this section we show how modularity leads to a good
performance when transferring the policy from simulation to
real world.

The experiments with the real PR2 were implemented with
the same set up as described in the former section: the goal
is placed in a fixed position and the object is randomly
sampled on the table within a 1000 cm2 area. Each episode is
terminated after 300 timesteps or when the distance from the
object to the goal is less than 2 cm (whichever happens first).
We sampled 20 initial object positions to test the performance
of our approach.

Fig. 11: Trajectories of the center of the object while being
pushed in the real world. The axes denote the relative initial
position of the object with respect the goal (located at the
origin). The red square identifies the goal. (Best viewed in
color).

The block in simulation and real-world are similar in size;
but the mass distribution is different, the simulated block is
solid, whereas the real one is hollow. The friction between

Fig. 12: Histogram of the final distance between the object
and the goal. Thresholded to a maximum value of 0.25 m.

Fig. 13: Scatter plot of the final distance between the object
and the goal. The axis denote the relative initial position of
the object with respect the goal. Thresholded to a maximum
value of 0.1 m. Red indicates that the final distance from
the object to the goal is higher than 0.1m, whereas purple
indicates a 0 distance. (Best viewed in color).

the block and the table and between the block and the
gripper are also different between simulation and the real
world. This leads to different dynamics of the object and
different resulting block trajectories, as shown in Figure 11.
Nevertheless, our method is capable of performing the task
(defined as at the final time step being within 2cm of the
goal) in 70% of the episodes, as shown in Figure 12. Figure
13 shows the final distance of the object for each of the
20 sampled initial positions, demonstrating that our method
succeeds from varying initial block positions.

The failing cases, in which the block does not reach within
2 cm of the goal, were due to a poor estimation of the object
position or orientation. The AR tags were detected from a
single kinect camera attached to the robot’s head. In some
cases the robot arm occludes the AR tags, which led to an
incorrect estimate of the object position. We mitigate this
problem by estimating the position of the object using the



Mujoco simulator whenever the AR tags are not visible.

VI. CONCLUSION

In this paper, we present a transfer method based on the
concept of modularity. We decouple the policy from the
image inputs and the torque outputs. Our policy is thus
more robust for transfer by using modularity to alleviate the
mismatch problem between simulation and reality. We test
our method with non-prehensible manipulation, specifically
pushing. Our results show strong performance in reality that
is comparable to our performance in simulation.

Furthermore, we present the concept of ”reward guiding”
which does not modify the asymptotic optimal policy and
leads to a faster learning than reward shaping [35] or adding
a linear combination of other reward terms. We also show the
effects in performance and sample efficiency of adding prior
knowledge of the task in the observation state and reward
function.
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