
Robust Real-Time Tracking Combining 3D
Shape, Color, and Motion

The International Journal of Robotics

Research

1–28

©The Author(s) 2015

Reprints and permission:

sagepub.co.uk/journalsPermissions.nav

DOI:10.1177/0278364915593399

http://mms.sagepub.com

D. Held∗, J. Levinson, S. Thrun, and S. Savarese
Department of Computer Science, Stanford University, USA

Abstract
Real-time tracking algorithms often suffer from low accuracy and poor robustness when confronted with difficult, real-world
data. We present a tracker that combines 3D shape, color (when available), and motion cues to accurately track moving
objects in real-time. Our tracker allocates computational effort based on the shape of the posterior distribution. Starting with
a coarse approximation to the posterior, the tracker successively refines this distribution, increasing in tracking accuracy
over time. The tracker can thus be run for any amount of time, after which the current approximation to the posterior is
returned. Even at a minimum runtime of 0.37 milliseconds per object, our method outperforms all of the baseline methods
of similar speed by at least 25% in RMS tracking error. If our tracker is allowed to run for longer, the accuracy continues to
improve, and it continues to outperform all baseline methods. Our tracker is thus anytime, allowing the speed or accuracy
to be optimized based on the needs of the application. By combining 3D shape, color (when available), and motion cues in
a probabilistic framework, our tracker is able to robustly handle changes in viewpoint, occlusions, and lighting variations
for moving objects of a variety of shapes, sizes, and distances.

Keywords
Tracking, 3D, Real-time

1. Introduction

Many robotics applications are limited in what they can achieve due to unreliable tracking estimates. For example, an
autonomous vehicle driving past a row of parked cars should know if one of these cars is about to pull out into the lane.
Current state-of-the-art trackers give noisy estimates of the velocity of these vehicles, which are difficult to track due to
heavy occlusion and viewpoint changes. Additionally, without robust estimates of the velocity of nearby vehicles, merging
onto or off of highways or changing lanes become formidable tasks. Similar issues will be encountered by any robot that
must act autonomously in crowded, dynamic environments.

Our tracker makes use of the full 3D shape of the object being tracked, which allows us to robustly track objects despite
occlusions or changes in viewpoint. We place the 3D shape information in a probabilistic framework in which we combine

∗Corresponding author; e-mail: davheld@cs.stanford.edu

2 Journal name 000(00)

Fig. 1. Our method tracks moving objects very accurately, as seen by these models generated from successive frame-to-frame alignments
from our tracker. The top row shows the individual frame of the tracked object with the largest number of points. The bottom row shows
the model created by our tracker.

cues from shape, color, and motion. As we will show, the 3D shape, color, and motion each contribute to the performance
of our system.

We make use of a novel grid-based method to sample velocities from the state space. Traditional grid-based approaches,
such as histogram filters, are too slow to track multiple objects in real-time. We are able to finely sample from a large grid
in real-time through the use of a novel method called annealed dynamic histograms. We start by sampling from the state
space at a coarse resolution, using an approximation to the posterior distribution over velocities. As the sampling resolution
increases, we anneal this distribution and the approximate distribution approaches the true posterior. At any point, the
current approximation to the posterior can be returned, with tracking resolution or runtime chosen based on the needs of
the application.

Our tracker presents a number of novel contributions over the previous state of the art. First, we introduce a new
sampling method called annealed dynamic histograms to globally explore the state space in real-time. This method allows
our tracker to estimate object velocities significantly more accurately than previous state-of-the-art approaches for real-time
tracking. We also present a novel derivation of a measurement model using the idea of a latent surface, which gives us
insight into how to select the model parameters. We extend this model to optionally include color, allowing us to combine
color, 3D shape, and motion in a coherent probabilistic framework. By combining these different cues, our tracker is more
robust to changes in viewpoint and occlusions. Finally, we perform a detailed quantitative analysis of how our method
compares to state-of-the-art tracking methods when tested on a large number of tracked objects of different types (people,
bikes, and moving cars) over varying levels of lighting, viewpoint changes, and occlusions. One of our evaluation metrics
involves computing the crispness of different object models generated using our tracker, as seen in Figure 1.

This article extends our previous work that was presented in Held et al. (2013) and Held et al. (2014). We present the
following novel contributions over our previous publications:

• A more detailed description of our probabilistic model (Section 4)
• A more detailed derivation of our measurement model (Sections 5.1 and 5.2)
• A description of two implementation improvements which reduce our RMS error by 10% and make our method 3

times faster than that of our previous publications (Section 5.4)
• A more detailed analysis of our results (Section 8.2)
• A visualization of examples where our method outperforms a baseline ICP method (Section 8.4)

Running head right side 3

For additional details on this project or to access the source code for our tracker, please see our project page at http:
//stanford.edu/~davheld/anytime_tracking.html.

2. Related Work

Tracking using 3D data has been an important challenge for many years. Traditionally, trackers that have depth data
available have discarded almost all of the 3D information, representing an object either by its centroid (Levinson et al.,
2011; Kaestner et al., 2012) or by the center of a bounding box (Leonard et al., 2008; Azim and Aycard, 2012; Streller et al.,
2002) wrapped in a Kalman filter. Although these are computationally efficient approaches, they are not very accurate.

Another method is to fit a 2D rectangular object model to the point cloud of the tracked object (Petrovskaya and Thrun,
2008). This method is designed for tracking objects that have a roughly rectangular shape, such as cars, and thus cannot be
used as a generic multi-purpose object tracker. The model in Petrovskaya and Thrun (2008) relies on detecting the corner
of the car in order to position the rectangular model, whereas Wojke and Haselich (2012) and Darms et al. (2008) also
handle the case where only one side of the car is visible. Our model is more general, in that it uses the full 3D shape and
does not assume that the tracked object is rectangular or any other pre-specified shape.

To make use of the full 3D shape of the tracked object, some trackers have attempted to align the object’s point clouds
using ICP and its variants (Feldman et al., 2012; Moosmann and Stiller, 2013). Such trackers use a local hill-climbing
approach to iteratively improve an alignment of two point clouds. However, these approaches depend heavily on starting
from a good initial alignment, and their accuracy degrades when the initialization is not close to the true alignment, as has
been shown by Olson (2009) and Held et al. (2013).

Grid-based methods are more common in SLAM systems (Simmons and Koenig, 1995) than in tracking, presumably
because of the computational issues involved in using fine grids. Our method enables a fine grid to be used for real-time
tracking by using a coarse-to-fine sampling with annealed dynamic histograms. This general approach to tracking is also
related to the methods used in various multi-resolution grid-based SLAM systems (Burgard et al., 1998; Olson, 2000, 2009;
Marcello et al., 2002; Ryde and Hu, 2010; Estivill-Castro and McKenzie, 2004).

Our work differs from the previous work on multi-resolution grid-based SLAM of Olson (2009) in a number of ways.
First, our method is designed for tracking, whereas the work of Olson (2009) is designed for SLAM. Second, their approach
to multi-resolution sampling is significantly slower than ours. In order to track many objects in real-time, the time to track
each object must be kept small. We demonstrate that their method requires over an order of magnitude more sample
evaluations to obtain the same accuracy. Finally, our derivation of the measurement model enables us to easily extend the
model to incorporate color, leading to a significant improvement in accuracy. In contrast, their measurement model was
constructed based on a more heuristic reasoning and is thus less easily extensible.

Our method of annealed dynamic histograms is related to the deterministic annealing methods for optimization. In
deterministic annealing, an optimum is found for an approximate distribution, and the distribution is gradually annealed
as the optimal solution is refined (Rose, 1998). Related methods known as “shaping" have been used in reinforcement
learning, starting with an easier task and progressing to increasingly difficult tasks (Randlov and Alstrom, 1998; Konidaris
and Barto, 2006). This class of methods is also known as “graduated optimization" and has been applied to the related
problem of image alignment (Zitnick, 2012). In contrast, our goal is not optimization but rather to estimate the posterior
distribution over velocities for a tracked object. In a general sense, our method is similar in that we start by sampling from
an approximation to the posterior distribution and then we refine our approximation over time.

Our method differs from previous tracking approaches in that we globally explore the state space in real-time, as
opposed to ICP and similar methods which perform hill-climbing from a given initialization. We also combine 3D shape,
color, and motion information, unlike standard ICP and scan-matching techniques that use the 3D shape alone. Our method

http://stanford.edu/~davheld/anytime_tracking.html
http://stanford.edu/~davheld/anytime_tracking.html

4 Journal name 000(00)

is general and can robustly track moving objects in real-time, despite heavy occlusions or viewpoint changes that can occur
in real-world tracking scenarios.

3. Tracking Pipeline

As a pre-processing step, we use a point-cloud based segmentation and data association algorithm, which segments objects
from the background into clusters and associates these object clusters between successive time frames (Teichman et al.,
2011). Our tracking method then estimates the velocity of each of the pre-segmented tracked objects. We introduce a new
technique called annealed dynamic histograms to globally explore the search space in real-time. We start by sampling the
state space with a coarse grid, and for each sample, we compute the probability of the state using the model described in
Section 5. We then subdivide some of the grid cells, as described in Section 6, to refine our distribution. Over time, our
distribution becomes increasingly accurate. After the desired runtime or tracking resolution, the tracker can be stopped, at
which point the current posterior distribution over velocities can be returned.

4. Probabilistic Model

4.1. State Space

Below we describe the probabilistic model that we use for tracking. In Section 6 we will describe how we use this model
as part of our annealed dynamic histogram framework. The state variable xt is defined as xt = (xt,p, ẋt), where xt,p is the
linear position and ẋt is the velocity of the tracked object. Because we are interested in tracking to estimate the motion of
objects, the position state variable xt,p measures the change in position relative to the last observation. To achieve this, after
each observation, we set the origin of the coordinate system to be located at the centroid of the previous observation, as
shown in Figure 2. The position state variable thus measures how far this object has moved since the previous observation.Velocity)Es,ma,on)

t" t#1"

Xt)

Fig. 2. The coordinate system for our state space. On the right is the tracked object observed at time t-1, and on the left is the new
observation at time t. At each time step, we place the origin of our coordinate system on the center of the previous observation.

We assume that the rotational velocity of the tracked object is small relative to the frame rate of the sensor. This is often
the case for people, bikes, and cars moving in urban settings. Thus, the rotational velocity is not included in the state. If
one is interested in estimating the rotational velocity, then after obtaining the posterior over translation one can optionally
search for the optimal rotation, as described in Section 6.4.

Our model is general and can be used to track objects moving in three dimensions. However, objects that we are interested
in (people, bikes, and cars) are confined to move along the ground surface. Thus, to speed up our method, we assume that
tracked objects exhibit minimal vertical motion within the frame rate of the sensor. Our state space therefore only models
motion along the ground surface. This assumption results in a significant speedup of our method, with minimal effect on
the accuracy. For settings in which one wants to track objects moving vertically, one can append the vertical dimension to
the state space, resulting in a slightly slower method. Alternatively, one can incorporate an elevation map to predict vertical
motion due to elevation changes.

Running head right side 5

4.2. Dynamic Bayesian Network

The Dynamic Bayesian Network upon which our model is built is shown in Figure 3. We wish to use the 3D shape of the
object being tracked in a Bayesian probabilistic framework, which allows us to combine the 3D shape with information
from color and motion. To do so, we include in our model a latent surface variable st, which corresponds to a set of points
sampled from the visible surface of the tracked object. Without this term, the measurement zt would be independent of
the previous measurement zt−1 conditioned on the state xt. Such a statement is false if our measurement includes the
3D shape of a tracked object, which stays relatively consistent from one time step to the next. Indeed, this independence
assumption would prevent us from comparing 3D measurements of current and past observations for tracking. To enable us
to incorporate the 3D shape of objects into our tracker, we add a variable st that represents the latent surface of the tracked
object.

!"#
$%

&"#
$%

'"#$%

!"#$%

&"#$%

'"#(%

!"#(%

&"#(%

'"#
$%

!"#
$%

&"#
$%

'"%

!"%

&"%

'")(%

!")(%

&")(%

*"+",%

-,+&./,0,1"%
234&,/5,67%

*./8+9,%:;<1"&%

Fig. 3. Dynamic Bayesian Network representing our model for a tracked object.

The latent surface variable is related to similar notions from previous work. For example, Petrovskaya and Thrun (2008)
include a geometry variable in which they model objects as 2D rectangles and estimate their widths and lengths. SLAM
systems use a similar variable to represent the environment map (Thrun et al., 2005). Both of these methods attempt to
explicitly model the geometry of the tracked object or environment. In contrast, we do not wish to explicitly model the
object’s shape, but rather we will integrate over shapes and focus on estimating the target object’s velocity.

We represent the latent surface st as a collection of n points {st,1 . . . st,n} ∈ st sampled from the visible surface of
the tracked object at time t. The prior p(st) on these points is a uniform distribution over the maximum size of a tracked
object. This prior decomposes as a product of the priors for each point in st, i.e. p(st) =

∏
j p(st,j).

The measurement zt represents the set of n observed points at time t, {zt,1 . . . zt,n} ∈ zt. Each measurement zt,j is
drawn from a corresponding latent surface point st,j . Because of sensor noise, the observed measurements zt will not lie
exactly on the object surface and hence will not be exactly equal to st. The observed points zt are generated from the latent
surface st and the state xt via the following procedure: for each latent surface point st,j , Gaussian noise is added based on
the sensor resolution Σe to create a noisy point s̃t,j . The point s̃t,j is now shifted according to the current object position
xt,p to generate the measurement zt,j at the appropriate location. Thus, we can write that

zt,j ∼ N (st,j ,Σe) + xt,p. (1)

As stated previously and shown in Figure 2, the previous measurements zt−1 are centered on the origin of the coordinate
system. The points in zt−1 are noisy observations of the previous surface st−1. Thus for each point zt−1,i ∈ zt−1 from the
previous observation, we have that

zt−1,i ∼ N (st−1,i,Σe). (2)

6 Journal name 000(00)

This creates an additional conditional independence assumption which is not encoded in the graphical model from Figure 3,
namely that

p(zt−1 | xt, st−1) = p(zt−1 | st−1). (3)

The term p(st, | st−1) represents the probability of sampling points st from the currently visible object surface given the
previously sampled points st−1. The sampled points may have changed due to occlusions, viewpoint changes, deformations,
and random sampling. We suppose that every point st,j ∈ st could have either been generated from a previously visible
portion of the object surface at time t − 1 or from a previously occluded portion. If p(V) represents the prior probability
of sampling from a previously visible surface, then we can write:

p(st,j | st−1) =p(V) p(st,j | st−1, V) +

p(¬V) p(st,j | st−1,¬V) (4)

We model p(st,j | st−1, V) as a Gaussian, st,j ∼ N (st−1,i,Σr) where Σr models the variance resulting from the sensor
resolution as well as from object deformations, and st−1,i is the nearest corresponding (latent) surface point from the
previous frame. The sensor resolution changes as a function of distance, and Σr is computed accordingly for each tracked
object.

The term p(st,j | st−1,¬V) represents the probability that st,j is generated given that the surface from which it is
sampled was previously occluded. If we have an occlusion model for the previous frame, we can use the occlusion model
to compute this probability. Otherwise, we can assume that any region that was not previously visible was previously
occluded. We can generically write this as

p(st,j | st−1,¬V) = k1 (k2 − p(st,j | st−1, V))

for some constants k1 and k2. We can now simplify equation 4 as

p(st,j | st−1) = η (p(st,j | st−1, V) + k) (5)

where η is a normalization constant and k acts as a smoothing factor, and

η = p(V)− p(¬V)k1

k = p(¬V)k1k2/η.

The sampling process is illustrated in Figure 4.

5. Tracking

We now describe how we use the Dynamic Bayesian Network described in Section 4.2 to track moving objects and estimate
their velocities. Our goal is to estimate p(xt | z1 . . . zt), the probability of the state xt given the past observations. Using
Bayes’ rule, we can rewrite this as

p(xt | z1 . . . zt) = η p(zt | xt, z1 . . . zt−1) p(xt | z1 . . . zt−1) (6)

Running head right side 7

st-1

zt

st

zt-1

Fig. 4. Illustration of the sampling of surface points st and measurement points zt. Because of sensor noise, the measurements zt will
not lie exactly on the object surface. Furthermore, because of occlusions, changes in viewpoint, deformations, and random sampling, the
visible surface points change from st−1 to st.

where η is a normalization constant. The first term is our measurement model. In the standard Bayes filter algorithm (Thrun
et al., 2005), one would use conditional independence assumptions to simplify this as

p(zt | xt, z1 . . . zt−1) = p(zt | xt).

However, in our case the latent variables s1, . . . st prevent us from making this simplification. Because all observations
come from the same object surface, they cannot be considered independent of each other. Therefore, we make a slightly
different approximation:

p(zt | xt, z1 . . . zt−1) ≈ p(zt | xt, zt−1) (7)

Intuitively, the current observation is most strongly affected by the previous observation, rather than the entire past history
of observations. Although tracking could be improved by using the entire past history of observations, this would add a
computational cost that we wish to avoid. The second term on the right-hand side of equation 6 is obtained from our motion
model, which will be described in Section 5.3.

5.1. Measurement Model Derivation

We now derive the measurement model, using the Dynamic Bayes Net from Figure 3. We can first write equation 7 using
the joint distribution as

p(zt | xt, zt−1) =

∫
p(zt, st | xt, zt−1) dst

=

∫
p(zt | st, xt) p(st | xt, zt−1) dst (8)

where we have used the chain rule of probability and the conditional independence assumptions from the model of Figure 3.
The second term inside the integral can be further expanded as

p(st | xt, zt−1) =

∫
p(st, st−1 | xt, zt−1) dst−1 (9)

8 Journal name 000(00)

Using independence assumptions from Figure 3 as well as the independence assumption from equation 3, we can further
expand the term inside this integral as

p(st, st−1 | xt, zt−1) = p(st | st−1) p(st−1 | xt, zt−1)

= η p(st | st−1) p(zt−1 | xt, st−1) p(st−1)

= η p(st | st−1) p(zt−1 | st−1) p(st−1) (10)

where η is a normalization constant. The term p(st−1) is a constant and can thus be absorbed by the normalization constant
η. The next two terms are given by equations 2 and 5,

p(zt−1 | st−1) = N (zt−1; st−1,Σe)

p(st | st−1) = η (N (st; st−1,Σr) + k)

where η is a normalization constant and k is a smoothing term. We can now evaluate the integral in equation 9 to get

p(st | xt, zt−1) = η (N (st; zt−1,Σr + Σe) + k)

We have used the fact that the convolution of two Gaussians is another Gaussian, following the standard derivation as in
Thrun et al. (2005). We also have from equation 1 that

p(zt | st, xt) = N (zt; st + xt,p,Σe).

We can now evaluate the integral of equation 8 to get

p(zt | xt, zt−1) = η (N (zt; zt−1 + xt,p,Σr + 2Σe) + k),

again using the fact that the convolution of two Gaussians is another Gaussian.
To compute the measurement model in practice, let z̄t−1 = zt−1 + xt,p; in other words, let z̄t−1 be the points zt−1

shifted by the position variable in the state xt. Then, for each point zj ∈ zt, let z̄i be the closest corresponding point in
z̄t−1. We then compute the measurement model probability as

p(zt | xt, zt−1)

= η

 ∏
zj∈zt

exp

(
−1

2
(zj − z̄i)T Σ−1(zj − z̄i)

)
+ k

 (11)

where η is a normalization constant and k is a smoothing factor. The covariance matrix Σ is given by Σ = 2Σe + Σr, with
covariance terms for Σe due to sensor noise and Σr due to the sensor resolution. To perform this computation, we first
shift the previous points zt−1 by the proposed velocity xt to obtain the shifted points z̄t−1. Then, for each point zj in the
current frame, we find the corresponding nearest shifted point z̄i ∈ z̄t−1. Given these correspondences, the measurement
model can then be computed using equation 11.

5.2. Tracking with color

Our 3D-based model can be used even if no color information is available. However, if color is available (such as from a
video camera), we can incorporate color matches into our probabilistic model. To leverage color, we learn the probability

Running head right side 9

distribution over color for correctly aligned points. To do so, we build a large dataset of correspondences (with a 5 cm
maximum distance) between colored laser returns from one laser spin and each of their spatially nearest points from the
subsequent spin, aligned using our recorded ego motion. An example visualization of tracking a single point is shown
on our project page at http://stanford.edu/~davheld/anytime_tracking.html. By observing how the
color of this point changes as we move past it, we can learn a probability distribution for color changes over a single frame.

We build a normalized histogram of the differences in color values between each point and its closest neighbor from the
next spin. The difference histogram we obtain is shown in Figure 5. The distribution closely follows a Laplacian distribution,
as expected (Huang and Mumford, 1999; Sun et al., 2008; Odom and Milanfar, 2006).

0 50 100 150 200 2500

0.02

0.04

0.06

0.08

Delta color value

Pr
ob

ab
ilit

y

Fig. 5. The probability that the color of a point will change by some amount over one frame.

In theory, we could incorporate multiple color channels into our model. However, such a model would require us to
learn the covariances between different color channels. Instead, we simplify the model by incorporating just a single color
channel (blue), chosen using a hold-out validation set. Although adding other color channels could provide additional
benefit, we show improved tracking performance with just one color channel alone.

We can now incorporate the learned color distribution into the measurement model derived in Section 5.1. The term
p(st,j | st−1, V) from equation 4 represents the probability of sampling point st,j given that the surface from which it is
sampled was previously visible at time t− 1. We now expand this term as a product of spatial and color probabilities:

p(st,j | st−1, V) = ps(st,j | st−1, V) pc(st,j | st−1, V) (12)

where ps(st,j | st−1, V) represents the probability based on the spatial match with the points in st−1, and pc(st,j | st−1, V)

represents the probability based on the color match with the points in st−1. As before, we model the spatial match probability
as ps(st,j | st−1, V) = N (st,j ; st−1,i,Σr), where Σr models the variance resulting from the sensor resolution as well as
from object deformations and st−1,i is the nearest corresponding (latent) surface point from the previous frame.

For the color match probability, we consider that, due to changes in lighting, lens flare, or other unmodeled causes,
the observed colors of an entire image can change drastically between two frames. We thus propose that there is some
probability p(¬C) that all of the the observed colors in an image will change in a way that is not modeled by the learned
color distribution from Figure 5. We can then write the color match probability from equation 12 as

pc(st,j | st−1, V) =p(C) pc(st,j | st−1, V, C) +

p(¬C) pc(st,j | st−1, V,¬C) (13)

where pc(st,j | st−1, V, C) is the learned color model distribution from Figure 5 (parameterized as a Laplacian) and
pc(st,j | st−1, V,¬C) = 1/255 is the probability of a point having any color, given that the color does not need to match
to that of a nearby point from the previous frame.

http://stanford.edu/~davheld/anytime_tracking.html

10 Journal name 000(00)

The parameter p(C), the probability that the color should match between two aligned points, must be chosen with care.
Some thought reveals that, when we are coarsely sampling the state space (see Section 6), we do not expect the colors to
match very well. Therefore, we set p(C) to be a function of the sampling resolution, as

p(C) = pc exp

(
−r2

2σ2
c

)
(14)

where r is the sampling resolution and σc is a parameter that controls the rate at which p(C) decreases with increasing
resolution. Thus, when we are sampling coarsely, we get a smaller value for p(C), meaning we do not expect the colors to
match at a coarse resolution. As we sample more finely, p(C) increases until p(C) = pc when r = 0, so that we expect the
colors to match more precisely at a finer sampling resolution.

In practice, we compute the measurement model incorporating color as follows: As before, let z̄t−1 = zt−1 + xt,p; in
other words, let z̄t−1 be the points zt−1 shifted by the position variable in the state xt. Then, for each point zj ∈ zt, let z̄i
be the closest corresponding point in z̄t−1. For each point, we compute the spatial probability as

ps(zj | xt, zt−1) = exp

(
−1

2
(zj − z̄i)T Σ−1(zj − z̄i)

)
We compute the color probability as

pc(zj | xt, zt−1, V) =p(C) pc(zj | z̄i, V, C) +

p(¬C) pc(zj | z̄i, V,¬C)

where p(C) is given by equation 14, pc(zj | z̄i, V, C) is given by the the learned color model distribution from Figure 5
(parameterized as a Laplacian), p(¬C) = 1 − p(C), and pc(zj | z̄i, V,¬C) = 1/255. Finally, we compute the total
measurement probability as

p(zt | xt, zt−1) =η

(∏
zj∈zt

ps(zj | xt, zt−1) pc(zj | xt, zt−1, V) +

k3
(
k4 − ps(zj | xt, zt−1)

))

where k3 can be computed from k in equation 11 as k3 = k/(k+ 1). The parameter k4 is a smoothing parameter that must
be chosen via cross-validation, and in our case we set it to 1.

5.3. Motion Model

Unlike ICP or a scan-matching algorithm, we also incorporate a motion model into our tracker. As we will show, adding
a motion model significantly improves tracking performance. To build the motion model, we take all of the values for
p(xt | z1 . . . zt) from the previous frame and fit a multi-variate Gaussian to the set of probabilities. We compute the mean
µt and covariance Σt by weighting each state by its probability as

µt =
∑
i

p(xt,i | z1 . . . zt)xt,i

Σt =
∑
i

p(xt,i | z1 . . . zt)(xt,i − µt)(xt,i − µt)
T

Running head right side 11

where xt,i is the state vector of sample i. Once a Gaussian over the posterior is obtained, the result is used in the standard
constant velocity model of a Kalman filter. This is a standard method, so we refer the reader to a basic text on the subject
for details (Thrun et al., 2005).

5.4. Implementation

In Held et al. (2014), we compute the measurement model by using a kd-tree to search for the nearest-neighbor for each
point. We also divide the space into a grid and cache the log probability for each grid cell after each search. Thus, for
each grid-cell, we only perform a single search in the kd-tree. Afterwards, we simply perform a quick table lookup of the
cached result. In our implementation, we set the discretization of the measurement grid equal to the state-space sampling
resolution (described in Section 6).

Here we present an alternative implementation that allows our tracker to run even faster. Rather than caching the
kd-tree search results, we instead use a pre-caching technique. We divide the space into a grid, as before. Then, for each
point zi ∈ zt−1, we pre-cache in each grid cell the probability of a point from zt falling into such a grid cell, using the
measurement model of equation 11. Because all points for a given object have the same covariance Σ, much of the work for
this computation can be done once and then reused for all points. Using pre-caching, we avoid having to perform relatively
costly kd-tree searches. We will show that this pre-caching technique gives us a large speedup over performing kd-tree
searches, with no loss in accuracy.

Additionally, we note that equation 11 is not symmetric with respect to zt and zt−1, especially if the two point clouds
are different sizes. Specifically, suppose that zt is much larger than zt−1 due to points becoming unoccluded. In such a
case, we will incur a large penalty for each point in zt that does not have a nearby match in zt−1. Thus, our tracker will
focus on aligning the densest part of zt in order to minimize the number of unmatched points. This will often lead to an
incorrect alignment estimate.

We can rectify this problem by choosing the larger of zt and zt−1 (in terms of the number of points) to play the "role"
of zt−1 and the smaller point cloud will play the "role" of zt in equation 11. Thus, as described above, we divide the space
into a grid, and we pre-cache the larger of zt and zt−1 in this grid. We then iterate over each point from the smaller of
zt and zt−1 and look up probabilities in the grid to compute the measurement model of equation 11. By performing the
computation in this manner, we are able to get a large improvement in performance, as we will show. It is important to
remember, when implementing this method, that the resulting alignment will give the opposite of the actual velocity if zt−1
and zt were switched to perform this computation.

6. Annealed Dynamic Histograms

Using the techniques described above, the measurement model and motion model probabilities are very quick to compute
for any particular candidate alignment between frames. However, we must compute these probabilities separately for every
state xt considered. If we densely sample the state space, then there will be a large number of computations to perform,
rendering this method too slow for real-time use. In order to enable our method to globally explore the state space in
real-time, we introduce a new technique called annealed dynamic histograms, which we will explain below.

6.1. Derivation

Our overall approach to dynamic histograms can be visualized in Figure 6. We start by coarsely dividing the state space
into grid cells and computing the probability p(xt|z1 . . . zt) for each cell. We then recursively expand some of the cells,
subdividing each cell into k sub-cells. We now derive a method for deciding which cells to divide and for computing the
probability of each of the new sub-cells.

12 Journal name 000(00)

Fig. 6. We decompose the state space using annealed dynamic histograms. Here we show the dynamic decomposition, starting from
a coarse sampling on the left and refining the distribution over time. The size of the circle is proportional to the sample’s alignment
probability.

The first step is to divide the state space into a coarse grid. We next choose some cells to subdivide into k sub-cells,
based on a criteria that we will establish. LetR be the (possibly non-contiguous) set of all cells that we choose to subdivide
into sub-cells ci. We can compute the discrete probability of the sub-cell ci ∈ R as follows:

p(ci) = p(ci ∩R)

= p(ci | R) p(R)

=
p(xi | z1 . . . zt)|ci|∑

j∈R p(xj | z1 . . . zt)|ci|
p(R)

= η p(xi | z1 . . . zt) p(R)

where |ci| is the volume of sub-cell ci. We thus have the property that
∑

i∈R p(ci) = p(R). The key here is that the
normalization constant η depends only on other sub-cells in region R. Thus, the probability values of all cells outside of
region R are unaffected by this computation.

We can now derive the criteria for choosing which cells to divide, based on minimizing the KL-divergence between
our histogram and the true posterior. Suppose distribution B is the current estimated distribution before we divide a given
grid cell, and distribution A is the new estimated distribution after we divide the grid cell into k sub-cells. In distribution A,
the k new sub-cells can each take on separate probabilities, allowing us to more accurately approximate the true posterior.
The KL-divergence between distributions A and B measures the difference between the old, coarser approximation to the
posterior and the new, improved approximation to the posterior. The size of the KL-divergence indicates how much we can
improve our approximation to the posterior by dividing a given grid cell.

Specifically, suppose that we have a cell whose discrete probability is Pi, and we are deciding whether to divide this
cell. Before dividing, we can view the cell as having k sub-cells, each of whose probability is constrained to be Pi/k. After
dividing, each of the sub-cells can take on a new probability pj , with the constraint that

∑k
j=1 pj = Pi. This situation is

illustrated in Figure 7.

Fig. 7. Before dividing a cell, we can view it as having sub-cells whose probabilities are all constrained to be equal. After dividing, each
of the sub-cells can take on its own probability.

Running head right side 13

The KL-divergence between these two distributions can be computed as

DKL(A||B) =

k∑
j=1

pj ln

(
pj
Pi/k

)

where B is the distribution before dividing and A is the distribution after dividing. The KL-divergence will obtain its
maximum value if pj′ = Pi for some j′ and pj = 0 for all j 6= j′. In this case, we have

DKL(A||B) = Pi ln k (15)

If the computation for each of the k sub-cells takes t seconds, then the maximum KL-divergence per second is then
equal to Pi ln k/(k t). If our goal is to find the histogram that matches as closely as possible to the true posterior, then
we should simply divide all cells whose probability Pi exceeds some threshold pmin. Similarly, to achieve the maximum
benefit per unit time, we should choose k to be as small as possible. For a histogram in d dimensions, we use k = 3d,
splitting cells into thirds along each dimension.

6.2. Annealing

Initially, when we sample the state space at a very coarse resolution, we would not expect to find a good alignment between
the previous frame and the current frame for the tracked object. In fact, the sampling resolution (shown in Figure 6)
introduces another source of error into our model. We thus increase the variance of the measurement model Gaussian
by some amount Σg , proportional to the resolution of the state-space sampling. Our measurement model variance now
becomes Σ = 2Σe + Σr + Σg . As we sample regions of the state space at a higher resolution, as shown in Figure 6, Σg

decreases towards 0. The measurement model is thus accordingly annealed as we refine our sampling of the state space,
motivating the name for our method of “annealed dynamic histograms." The complete method can then be implemented
as shown in Algorithm 1.

6.3. Using the Tracked Estimate

The tracker can return information about the tracked object’s velocity in any format, as requested by the planner or some
other component of the system. For example, to minimize the RMS error, as in Section 8.2, we return the mean of the
posterior. On the other hand, to build accurate object models, as in Section 8.3, we use the mode of the distribution. A
simple planner might request either the mean or the mode of the posterior distribution, as well as the variance. A more
sophisticated planner could make use of the entire tracked probability histogram, in the form of a density tree (Thrun et al.,
2001).

We will now demonstrate that the mean of the distribution will minimize the RMS error. Assume that the true distribution
over velocities is p(v), where the distribution is based on the probabilistic noise in our measurement (from the sensor noise
and the sensor resolution). To minimize the RMS error, we want to find the velocity v̂ that minimizes

min
v̂

IE(v̂ − v)2

where we take the expectation with respect to p(v). To minimize this, we first rewrite the expectation as a sum:

min
v̂

∑
v

p(v)(v̂ − v)2

14 Journal name 000(00)

Input : Initial coarse tracking hypotheses H0, initial sampling resolution g0, desired sampling resolution gdes
Output: A set of cells ci and probabilities p(ci)
Hnew ← H0, g ← g0, p(R)← 1;
while g > gdes do

Σg ← gI;
Σ← 2Σe + Σr + Σg;
/* Compute probability of velocities */
for each cell ci ∈ Hnew do
x̂t,i = center of cell ci;
Compute p(zt | x̂t,i, zt−1) from equation 11;
Compute p(x̂t,i | z1 . . . zt−1) from the motion model;
p̃(x̂t,i | z1 . . . zt)← p(zt | x̂t,i, zt−1) p(x̂t,i | z1 . . . zt−1); // Unnormalized probability

end
/* Normalize probabilities */
η ←

∑
ci∈Hnew

p̃(x̂t,i | z1 . . . zt);
for each cell ci ∈ Hnew do
p(ci)← η p̃(x̂t,i | z1 . . . zt) p(R)

end
/* Finely sample high probability regions */
Hnew = ∅;
for each cell with p(ci) > pmin do

Subdivide cell ci by k along each dimension and add to Hnew;
end
p(R)←

∑
ci∈Hnew

p(ci);
g ← g/k;

end
Algorithm 1: ADH Tracker

We then take the derivative with respect to v̂ and set it equal to 0 to get

2
∑
v

p(v)(v̂ − v) = 0∑
v

p(v)v̂ =
∑
v

p(v)v

v̂
∑
v

p(v) =
∑
v

p(v)v

v̂ = µv

where we have used the fact that p(v) is a probability distribution, so
∑

v p(v) = 1. The expression
∑

v p(v)v is simply
the mean of v, µv , thus demonstrating that the mean of the distribution, rather than the mode, will minimize the RMS error.
Depending on which objective is important for a particular application, the tracker can return the mean, the mode, or the
entire distribution, as described above.

6.4. Estimating Rotation

For some applications, the rotation of the tracked object might need to be estimated in addition to the translation. To estimate
the rotation, we first find the mode of the posterior distribution over the translation. We then perform coordinate descent in
each rotation axis, holding translation fixed. Based on the application, we can search over yaw only, or we can also search
over roll and pitch. Because we are searching separately over each axis of rotation, this optimization is relatively quick to
perform. We incorporate a search over rotation when we evaluate our tracker by building 3D object models in Section 8.3.

Running head right side 15

7. System

We obtain the 3D point cloud used for tracking with a Velodyne HDL-64E S2 LIDAR mounted on a vehicle. The Velodyne
has 64 beams that rotate at 10 Hz, returning 130,000 points per 360 degree rotation over a vertical range of 26.8 degrees.
We color these points with high-resolution camera images obtained from 5 Point Grey Ladybug-3 RGB cameras, which
use fish-eye lenses to capture 1600x1200 images at 10 Hz. The laser is calibrated using the method of (Levinson and Thrun,
2010). The vehicle pose is obtained using the Applanix POS-LV 420 inertial GPS navigation system. Experiments were
performed single-threaded on a 2.8 GHz Intel Core i7 processor.

8. Results

In order to measure the robustness of our tracker, we must evaluate on a large number of tracked objects. Therefore, we
cannot use the evaluation methods of Manz et al. (2011) and Moosmann and Stiller (2013), in which a small number of
tracked vehicles are equipped with a measuring apparatus. Instead, we propose two methods to automatically evaluate our
velocity estimates on a large number of tracked objects. First, using the evaluation method of Held et al. (2013), we track
parked cars in a local reference frame in which they appear to be moving. This allows us to directly measure the accuracy of
our velocity estimates, described in Section 8.2. We also evaluate our tracker by building models of tracked objects using
our estimated velocity. We compute a crispness score, as in Sheehan et al. (2012), to compare how correctly the models
were constructed. We use this method to evaluate our tracking accuracy on a large number of people, bikes, and moving
cars, described in Section 8.3. Using these two evaluation methods, we are able to determine the robustness of our tracker
on a wide variety of objects of different types and in different conditions.

8.1. Choosing parameters

Parameters for our model, as well as parameters for the baseline methods, were chosen by performing a grid search using
a training set that is completely separate from our test set. The training set consists of 13.6 minutes of logged data, during
which time we drove past a total of 622 parked cars. Using this training set, the final parameters chosen for our system
are as follows, for an object with a horizontal sensor resolution of r meters and a state-space sampling resolution of g:
k = 0.8, Σ′e = 2Σe = (0.03 m)2I, Σr = (r/2)I, and Σg = gI, where I is the 3x3 identity matrix. For the dynamic histogram,
we initialize from a coarse resolution of 1 m, and we continue until the resolution of the resulting histogram is less than
max(r, 0.05 m), with pmin = 10−4. For our color model, we have pc = 0.05 and σc = 1 m. Because our data contains
many frames with lens flare as well as underexposed frames, our system learns to assign a low priority to color matches.
Our learned color distribution for aligned points is given by a Laplacian with parameter b = 13.9. For all methods tested,
we downsample the current frame’s point cloud to no more than 150 points and the previous frame to no more than 2000
points, where the current frame zt and previous frame zt−1 are chosen as described in Section 5.4.

8.2. Evaluation: Relative Reference Frame

Dataset. The first approach we take to quantitatively evaluate the results of our tracker is to track parked cars in a local
reference frame in which they appear to be moving, as is done in Held et al. (2013). In our 6.6 minute test dataset, we drive
past 557 parked cars. However, in a local reference frame, each of these parked cars appears to be moving in the reverse
direction of our own motion. Because we have logged our own velocity, we can compute the ground-truth relative velocity
of a parked vehicle in this local reference frame and quantitatively evaluate the precision of our tracking velocity estimates.
Furthermore, as we drive past each car, the viewpoint and occlusions change over time. We are thus able to evaluate our
method’s response to many real-world challenges associated with tracking. We will show in Section 8.3 further quantitative

16 Journal name 000(00)

results when tracking moving objects of different classes (cars, bikes, and pedestrians), to demonstrate that our method
works on moving objects and generalizes across object types.

During the 6.6 minutes of our test set, our trajectory follows the path shown in Figure 8. During this test set, the relative
motion of vehicles that we are tracking take a range of linear and angular velocities, as shown in Figure 9. The mean linear
velocity is 5.6 m/s, with a standard deviation of 4.2 m/s. This range of linear velocities is the result of two effects. First,
the ego vehicle changes its own velocity throughout the dataset, causing the relative velocity of nearby vehicles to change
accordingly. Second, the ego vehicle makes a number of rotations throughout the dataset, as can be seen in Figure 8. When
the ego vehicle rotates, the relative motion of nearby objects will vary based on their distance to the ego vehicle. These two
effects combine to produce a range of relative velocities for the different vehicles in our test set, as shown in Figure 9.

0 100 200 300 400
0

50

100

150

200

250

X position (m)

Y
 p

os
iti

on
 (

m
)

Fig. 8. Path taken by our vehicle while recording the data used for our test set.

0 10 20 30 40
0

1000

2000

3000

4000

5000

Velocity (m/s)

C
ou

nt

−40 −20 0 20 40
0

2000

4000

6000

8000

Angular Velocity (degrees/s)

C
ou

nt

Fig. 9. Distribution of relative velocities of vehicles in our test set. Left: Linear velocities. Right: Angular velocities.

We ignore tracks that contain major undersegmentation errors, in which the tracked object is segmented together with
another object, as this leads to an ambiguity about the correct ground-truth alignment. We thus filter out 7% of our initial
tracks based on segmentation issues, leaving us with 515 properly segmented cars to track. We do not filter out tracks in
which the tracked object has been oversegmented into multiple pieces.

Baseline Comparison. To compare the robustness of different tracking methods, we compute the RMS tracking error for
each method. The results are shown in Figure 10. First, we evaluate a Kalman filter with a measurement model given by the
centroid of the tracked points. Because of its speed and ease of implementation, this is a popular method, used in Levinson
et al. (2011) and Kaestner et al. (2012). As can be seen in Figure 10, this method is extremely fast, completing in less than

Running head right side 17

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

R
M

S
 e

rr
or

 (
m

/s
)

Mean runtime (ms)

Kalman Filter
ICP
Kalman ICP with Centroid Init
Kalman ICP with Kalman Init
ADH (Ours)

Fig. 10. RMS error vs runtime of our method compared to several baseline methods. The centroid-based Kalman filter runs in 0.004 ms,
which is difficult to visualize on the scale of this plot. Note that the method “Kalman ICP with Kalman Init" is a novel baseline method.
The ADH tracker is more accurate than the baselines while still running in real time.

0.1 milliseconds. However, the method is not very accurate, producing an RMS error of 0.78 m/s across the 515 cars in our
test set.

Next, we evaluate a number of variants of ICP, the iterative closest point method. First, we evaluate the basic point-to-
point ICP algorithm, using the implementation from PCL (Rusu and Cousins, 2011). This basic method is used for tracking
by Feldman et al. (2012). As is standard, we initialize ICP by aligning the centroids of the tracked object. We run ICP for
1, 5, 10, 20, 50, and 100 iterations, and the results are shown in Figure 10. It is clear from Figure 10 that the basic ICP
algorithm does not perform well for tracking, with an RMS error 23% worse than that of a simple Kalman filter. As we
will show, this decrease in accuracy is because the standard ICP algorithm does not make use of a motion model, which is
crucial for robust tracking.

We next compare to a Kalman filter with ICP used as the measurement model. Combining ICP with the motion model
in a Kalman filter makes the method much more robust to failures of ICP. Because ICP is dependent on its initialization, we
test three different strategies to initialize this method. First, we try initializing ICP by aligning the centroids of the tracked
object, as we did above. We also try initializing ICP using the mean prediction from the motion model, as was done by
Moosmann and Stiller (2013). Last, we try first running the centroid through a Kalman filter and using the output as the
initialization for ICP.

Figure 10 compares these three methods. Initializing using the mean prediction from the motion model is not shown
on this plot because the performance is significantly worse than the other methods tested, giving an RMS error of 2.6 m/s.
An analysis of why this occurs reveals that this method performs well when the tracked object is moving at a relatively
constant velocity, but it performs poorly when the object is quickly accelerating or decelerating. Thus, initializing ICP with
the mean prediction of the motion model is a poor choice for tracking objects that can quickly change velocity.

Using a Kalman filter with ICP, initialized by aligning the centroids, performs reasonably, with an improvement of
11.7% over a simple Kalman filter. Finally, if we run the centroid through a Kalman filter and use the output as the
initialization for ICP (and use the ICP result as the measurement model for another Kalman filter), then we get the best
performance of the ICP baseline methods that were tested, with an RMS error of 0.63 m/s. To the best of our knowledge,
this is a novel baseline method that has not been tested previously in the tracking literature. However, all versions of ICP
suffer from the problem of choosing a good initialization. Our method, in contrast to all of the ICP methods, is more robust
in that does not depend on the initialization.

18 Journal name 000(00)

We also compare to the method of Held et al. (2013), without using color. This method performs poorly compared to our
baselines, giving an RMS error of 1.04 m/s. The main reason for this poor performance is that this method does not make
use of a motion model. As has already been shown, adding a motion model makes a significant difference when tracking
moving objects. This method also takes an average of 86 milliseconds per frame and hence is probably not appropriate for
a real-time system.

Our method achieves an accuracy of 0.53 m/s after running for just 0.37 milliseconds. Even at this minimum runtime,
our method performs 32.7% better than a simple Kalman filter and 25% better than all of the baseline methods of similar
speed, as shown in Figure 10. If our method is allowed to run for 0.64 milliseconds, our method achieves an accuracy of
0.49 m/s, which is 23% better than all baseline methods that were tested. Note also that this is an average over 515 tracked
vehicles, and that the tracking accuracy varies as a function of distance. For example, for objects within 5 m, our method
achieves an RMS error of 0.15 m/s, whereas for objects 65 m away, our method achieves an RMS error of 1.4 m/s.

If color images are available, then we can easily extend our measurement model to incorporate color, as described in
Section 5.2. This is one advantage of our derivation of the measurement model, as opposed to the more heuristic justification
of Olson (2009) and Thrun et al. (2005). With the addition of color, our RMS error decreases by an additional 10.4%,
achieving an RMS error of 0.43 m/s. Note that many frames in our test set contain heavy shadows or lens flare. We thus
expect color to make an even bigger difference when lens flare and similar exposure problems are avoided.

It is interesting to compare the performance of our method to that of a radar, which can also be used to measure the
velocity of moving objects. The Bosch LRR3 Radar can estimate velocities to within 0.12 m/s (Chassis Systems Control

LRR3: 3rd generation Long-Range Radar Sensor, 2009). However, a radar only estimates velocity in a single dimension: in
the direction from the radar to the tracked object. This one-dimensional estimate is of limited use for robotics or autonomous
driving, in which we need a 2D estimate of the velocity of each object to estimate where each object is moving. Our method
returns a 2D velocity estimate, and by searching over vertical motion and over rotations our method can be made to return
a 6D velocity estimate.

In this paper, we modified our method to align the smaller set of points to the larger set of points, as explained in
Section 5.4, instead of always aligning the more recent points zt to the points from the previous frame zt−1. By aligning
the smaller set of points to the larger set, we get a 10% improvement in RMS error, from 0.54 m/s to 0.49 m/s. If we are
using the version of our method that incorporates color, then the improvement is even bigger at 12.6%, from 0.50 m/s RMS
error to 0.43 m/s. This change is mostly responsible for the large drop in the error of our current method compared to the
older version published in Held et al. (2014).

We also described in Section 5.4 that we are now using a fast pre-caching scheme to compute the measurement model,
as opposed to using kd-tree searches as in Held et al. (2014). The resulting method is almost 3 times faster at the same level
of resolution, reducing the speed from 1.8 milliseconds per frame to 0.64 milliseconds per frame at a sampling resolution
of 3.7 cm. By avoiding kd-tree searches and re-using the covariance computations for each point, we are able to obtain a
significant speedup.

Sampling Analysis. One of the novel additions of our method is the use of annealed dynamic histograms, as described in
section 6, to speed up our tracker. In Figure 11, we show the decrease in speed if we were to densely sample the search
space. Densely sampling is about 138 times slower for approximately the same level of accuracy. When searching over
alignments, we expand all cells whose probability exceeds a minimum threshold Pmin. If we were to instead only expand
the single highest probability cell on each step, our RMS error would increase by 46.3%.

We also compare to the multi-resolution model from Olson (2009). Olson computes a low-resolution model (0.3 m) and
a high-resolution model (0.03 m). The low-resolution model is computed by taking a maximum over the high-resolution
regions. Sampling then alternates between the low and high resolution models until the method has found the maximum
of the high resolution model. Due to the way in which the low resolution model is constructed, this model is guaranteed

Running head right side 19

0 20 40 60 800

0.2

0.4

0.6

0.8

1

1.2

Mean runtime (ms)

RM
S

er
ro

r (
m

/s
)

Dense sampling
ADH Tracker (Ours)

−2 0 2 4 60

0.2

0.4

0.6

0.8

1

1.2

Log mean runtime (log ms)

RM
S

er
ro

r (
m

/s
)

Dense sampling
ADH Tracker (Ours)

Fig. 11. Left: Accuracy vs mean runtime using annealed dynamic histograms compared to densely sampling the state space. Right: Same
plot visualized on a log time scale.

to find the global maximum of the high resolution model. Indeed, if we sample from the search space using the method
from Olson (2009) and take the mean of the resulting distribution, we get an RMS accuracy of 0.49 m/s, which is the same
accuracy that we get by sampling with the ADH tracker.

However, the sampling method of Olson (2009) is much slower than the sampling method of the ADH tracker. The
ADH tracker takes about 0.64 ms per object per frame, whereas the tracker of Olson (2009) takes 14.5 ms per object per
frame, or a 24 times reduction in speed. The main reason that the Olson tracker is slower is that it requires more samples
from the state space to find the mode, requiring an average of 3899 samples, whereas the ADH tracker uses an average
of only 172 samples. The ADH tracker thus requires 23 times fewer samples, which almost completely accounts for the
difference in runtime. Furthermore, if a hard limit is placed on the number of samples taken by the Olson tracker, the
error rate increases dramatically, indicating that early-stopping to decrease the runtime is not a viable option for the Olson
tracker.

There are multiple differences between the sampling methods of the ADH tracker and that of the Olson tracker. One
difference is that the ADH tracker can sample at many levels of resolution. In our implementation, the ADH tracker begins
with a coarse sampling of 1 m. The tracker then repeatedly reduces the sampling resolution by a factor 3, thus sampling
at 0.33 m, then 0.11 m, and finally at 0.03 m. In contrast, the Olson tracker samples at only 2 resolutions: first a coarse
sampling at 0.3 m, followed by a fine sampling at 0.03 m.

To understand how important this difference was, we first modified the ADH tracker so that it also samples only at 2
resolutions: a coarse sampling of 0.3 m followed by a fine sampling of 0.03 m, just like the Olson tracker. Despite this
change, the ADH tracker is still more efficient, running in 2 ms, or a speedup of a factor of 7 over the Olson tracker. This
speedup factor of 7 must then be based on a fundamental difference in the sampling method between the Olson and ADH
trackers. We can thus conclude that the ADH tracker gains a 3.3 times speedup over the Olson tracker by using a 4-level
resolution model rather than a 2-level resolution model, and the ADH tracker gains an additional 7 times speedup based
on the method of sampling alone.

The cause of the factor of 7 speedup over the Olson tracker is based on the way in which samples are generated.
To sample at a coarse resolution, the Olson tracker takes a maximum over the corresponding high resolution regions.
In contrast, the ADH tracker increases the noise of the measurement model by an amount proportional to the sampling
resolution. Taking a maximum as in the Olson tracker provides an extreme level of smoothing and thus too many samples
at the coarse resolution appear to have a high probability. In contrast, increasing the measurement noise in the ADH tracker
still leads to an informative distribution at the coarse resolution, in that low probability regions at a high resolution tend
to correspond to low probability regions at the coarse resolution. Thus, in the ADH tracker, the coarse resolution is more

20 Journal name 000(00)

informative about which regions are most likely to contain the mode of the high resolution distribution. As a result, the
ADH tracker requires fewer samples to find the mode.

A further factor of 3.3 speedup is obtained using a 4-level sampling resolution model rather than just the 2-level
sampling resolution model of the Olson tracker, as explained above. Unfortunately, it is not possible to simply extend the
Olson tracker to more than 2 levels of resolution. The Olson tracker uses the coarse resolution to find the mode of the
higher resolution, and the method is considered to be converged once the mode of the higher resolution is discovered. In
a 4-level sampling resolution model, the lowest resolution model would continue sampling until it has found the mode of
the 2nd lowest resolution model. However, this mode does not necessarily correspond to the mode of the highest resolution
model, so stopping at this point would not be helpful. Further, the method is already much slower than the ADH tracker,
so continuing to sample would also not be practical. Thus, the Olson tracker suffers by not being extensible to more than a
2-level sampling resolution model, whereas the ADH tracker naturally extends to many levels of sampling resolution.

0 500 1000 1500 2000 2500 3000 3500 4000

ADH 4−resolution (Ours)

ADH 2−resolution

Olson 2−resolution

Number of samples

Fig. 12. Number of samples required by different methods to create the same tracking accuracy. Top: The tracker of Olson (2009).
Middle: Our tracker, modified to have only 2 levels of sampling resolution. Bottom: Our tracker, using our full model with 4 levels of
sampling resolution.

These results are summarized in Figure 12. The method of Olson (2009) requires an average of 3899 samples to achieve
an accuracy of 0.49 m/s. The ADH tracker, modified to have only 2 levels of sampling resolution like Olson (2009), requires
only 680 samples on average to achieve the same accuracy. Finally, our full method, with 4 levels of sampling resolution,
requires only 172 samples to achieve the same level of accuracy. As explained above, the runtime is proportional to the
number of samples, so the greater number of samples required by Olson (2009) leads to a significantly slower method,
which can make the method not feasible for real-time tracking in autonomous driving applications. A visualization of the
number of samples required by the three methods are shown for a specific example in Figure 13.

Fig. 13. Visualization of the number of samples required by three different sampling methods to achieve the same level of accuracy.
Each point represents a single sample. Regions with a large number of closely-spaced samples appear as a solid color. Left: The tracker
of Olson (2009). Middle: Our tracker, modified to have only 2 levels of sampling resolution. Right: Our tracker, using our full model
with 4 levels of sampling resolution.

Running head right side 21

Error Analysis. In order to better understand the performance of our tracker, we evaluate how the performance varies as a
function of the number of points observed by our 3D sensor on the tracked object. The results are shown in Figure 14. As
shown, the RMS error decreases as the number of tracked points increases, and our ADH tracker outperforms the centroid-
based Kalman filter baseline for any number of points. The two methods have similar performance when the number of
points is small, since the ADH Tracker cannot take advantage of the 3D shape when there are not many visible points on
the tracked object. As the number of visible points increases, the ADH Tracker is able to increase its tracking accuracy. The
accuracy of the Kalman filter also improves as the number of points increases, probably due to the decreased occlusions
for close objects which also have a large number of points. The difference in performance between the two methods shows
the benefit of using the full 3D shape for varying numbers of observed points on the tracked object.

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of points

R
M

S
 e

rr
or

 (
m

/s
)

Kalman Filter
ADH Tracker (Ours)

Fig. 14. RMS Error as a function of the number of points for each tracked object.

We can similarly compute the RMS error as a function of the distance to the tracked object, shown in Figure 15. Our
method consistently outperforms the centroid-based Kalman filter at all tracked distances. Figures 14 and 15 can also be
used to predict the RMS error for each tracked object. For example, Figure 15 shows that our RMS error is 0.15 m/s for
nearby objects, and our error increases as the distance to the tracked object increases.

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Distance to tracked vehicle (m)

R
M

S
 e

rr
or

 (
m

/s
)

Kalman Filter
ADH Tracker (Ours)

Fig. 15. RMS Error as a function of the distance to each tracked object.

Because of our motion model, we would expect the error of our method to decrease as the number of frames that we
have seen an object increases, as we get a better estimate of the prior motion of the tracked object. This effect is shown
in Figure 16. This figure indicates that our error is very large when we have only seen an object for 3 or fewer frames.

22 Journal name 000(00)

One explanation is that, before we have observed 4 frames, we do not yet have a good estimate of the tracked object’s past
motion. After observing an object for at least 4 frames, our motion model can be used to place a prior on the motion, thus
reducing our error. Another possible explanation is that, when first observing an object, the object may initially be mostly
occluded. After 4 frames, more of the object becomes visible, leading to better tracking.

0 50 100 1500

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of frames

RM
S

er
ro

r (
m

/s
)

ADH Tracker without motion model
ADH Tracker (Ours)

0 5 10 150

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of frames
RM

S
er

ro
r (

m
/s

)

ADH Tracker without motion model
ADH Tracker (Ours)

Fig. 16. Left: RMS Error as a function of the number of frames seen so far for each tracked object. We compare the results of our method
with and without a motion model. Right: RMS Error as a function of the number of frames, viewed from 0 to 15 frames to more closely
see the accuracy when initially tracking an object. Note that we can only begin estimating the object’s velocity after seeing it for at least
2 frames.

We can disambiguate these effects by looking at the result of our method with and without the use of a motion model,
as shown in Figure 16. When a motion model is not used, the only benefit of tracking an object for more frames is that
more of the object will become visible. The difference between the two curves shows the benefit of using a motion model
as the number of frames increases. As expected, for the first frame, the performance of the two methods is identical. After
a few frames are observed, the tracker with a motion model significantly outperforms the version without a motion model.

In Figure 17 we can see that the velocity of the tracked object affects the tracking accuracy. Faster objects are more
difficult to track accurately, due to the changing occlusions and viewpoints as the object moves. However, this figure shows
that the ADH Tracker is more robust than ICP to tracking fast-moving objects and outperforms ICP for all linear velocities.
For objects with a large angular velocity, both methods perform similarly, but the ADH tracker excels when tracking objects
with a small angular velocity. Most objects moving in an urban scene have a small angular velocity for the majority of their
motion, so increasing the tracking accuracy for objects with small angular velocity is important.

We claimed in Section 6.3 that the mean of the posterior distribution will minimize the RMS error. We can now verify
that the RMS error decreases by 7.5% if we use the mean of the distribution instead of the mode. In a multimodal distribution,
the mode will select the single point with the highest probability. However, if two modes have similar probabilities, the
mode will often be far from the ground-truth alignment. The mean, on the other hand, will consider both modes and choose
an estimate in between them. As explained in Section 6.3, using the mean will minimize the RMS tracking error.

We can understand the effect of different components of our system by looking at Figure 18. The full method combines
3D shape, color, and a motion model for an RMS error of 0.43 m/s (on average across 515 tracked vehicles). Removing
color causes the error to increase by 14% to 0.49 m/s. Removing the motion model causes the error to increase by 44% to
0.62 m/s. Removing the 3D shape (by using a centroid-based Kalman filter) causes the error to increase by 81% to 0.78
m/s. Thus, using the full 3D shape and a motion model are crucial for accurate tracking.

We can also analyze the different sources of error of our evaluation method to determine the reliability our ground-truth
data. First, by running SLAM on our dataset, we can show that our position estimate has an RMS error of 1.5 mm. Because
our sensor has a framerate of 10 Hz, this equates to a velocity error of 0.015 m/s. Thus, our position error can account for
less than 3.5% of the error of our method, which has an RMS error of 0.43 m/s when using color. The Velodyne Lidar,

Running head right side 23

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Angular Velocity (degrees/s)

M
ea

n
E

rr
or

 (
m

/s
)

0 10 20 30
0

0.5

1

1.5

Velocity (m/s)

M
ea

n
E

rr
or

 (
m

/s
)

Kalman ICP

ADH Tracker (Ours)

Fig. 17. Mean error as a function of the linear velocity (left) or angular velocity (right) of the tracked object.

No color No motion model No 3D shape0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
er

ro
r (

m
/s

)

Fig. 18. RMS Error for different versions of the ADH tracker. The RMS error of the full ADH tracker is indicated by the black dashed
line. Using the centroid instead of the full 3D shape would cause the biggest increase in error, shown by the bar on the right. Not using
a motion model leads to the increase in error shown in the middle, and not using color leads to the increase in error shown on the left.

on the other hand, has reported errors of less than 2 cm, which could account for 47% of our total error (Velodyne Lidar

HDL-64E Datasheet, 2010). However, because we have calibrated our Velodyne using the calibration method of Levinson
and Thrun (2010), we expect the actual error of our Velodyne measurements to be much less.

By looking at the mean velocity error, we can further determine if there is a bias in our velocity estimates. When tracking
using color, our mean velocity error is -0.03 m/s, which is 5.6% of our total error. A completely unbiased tracker would
have a mean velocity error of 0, when averaged over an infinite number of tracked objects. Based on the error analysis
above, we conclude that, if our method is biased, the bias is relatively small.

It is also interesting to compare the error of our method to the half-resolution of our sensor. The laser returns of our sensor
become increasingly sparse as the distance to the tracked object increases. We define the resolution to be the horizontal
spacing between sensor measurements at a given distance. We can see the half-resolution of our sensor in Figure 19, which
we compare to the RMS alignment error. Our accuracy nearly matches the half-resolution of the sensor. By using a motion
model, we can potentially improve our accuracy below the half-resolution for objects that maintain a constant velocity.
However, for objects that change their velocity in unpredictable ways, the half-resolution represents a limit on the potential
accuracy of our method when using a 3D Lidar for frame-to-frame tracking.

24 Journal name 000(00)

0 10 20 30 40 50 600

0.02

0.04

0.06

0.08

0.1

0.12

Distance to tracked vehicle (m)

RM
S

al
ig

nm
en

t e
rro

r (
m

)

ADH Tracker (Ours)
Velodyne half−resolution

Fig. 19. RMS Error as a function of the distance to each tracked object, when tracking with color. We also show the half-resolution of
our 3D sensor.

Fig. 20. Models obtained by tracking objects. The top row is the individual frame of the tracked object with the highest number of points.
The bottom row is the model created by our tracker. Note that we are only performing frame-to-frame alignment when building these
models.

8.3. Evaluation: Model Crispness

To evaluate the accuracy of our tracking estimates on a variety of moving objects, we build models of tracked objects
by aligning the point clouds using our estimated velocity. These models can be visualized in Figures 1 and 20. For each
model, we compute a crispness score (Sheehan et al., 2012) to evaluate how correctly the models were constructed; a
crisp model corresponds to an accurately tracked object. As can be seen in Figure 21, if tracking is not accurate, the
resulting model will be very noisy. A movie visualizing this model being constructed can be seen on our project page at
http://stanford.edu/~davheld/anytime_tracking.html.

For each tracked object, we compute a crispness score as

1

T 2

T∑
i=1

T∑
j=1

1

ni

ni∑
k=1

G(xk − x̂k, 2Σ)

where T is the number of frames for which the object is observed, ni is the number of points in the ith frame, x̂k is the
point in frame j nearest to point xk in frame i, G is a multi-variate Gaussian, and Σ controls the penalty for matches of
different distances (Sheehan et al., 2012). Our crispness score has a minimum value of 0 and a maximum value of 1.

Using the crispness score, we evaluate our tracker on 135 people, 79 bikes, and 63 moving cars. For this evaluation, we
use two test sets that were recorded 1 month earlier and 6 months later than the test set used in Section 8.2. In addition, the
test set for the previous section was recorded around sundown, whereas the test sets in this section were recorded closer to

http://stanford.edu/~davheld/anytime_tracking.html

Running head right side 25

noon. By testing during different seasons and times of day, we further demonstrate our robustness to changes in location,
season, and lighting.

Fig. 21. A comparison of the models built with different tracking methods. Left: Our Method. Right: Kalman ICP.

Table 8.3 shows the crispness scores for tracking people, bikes, and moving cars. We evaluate our our method as well as
two high performing baseline methods, selected based on performance in Section 8.2. When at least 100 points are visible,
our method outperforms all other methods across all object classes. In Table 8.3, only frames with at least 200 points are
used to compute the crispness score.

Tracking Method Object Class

People Bikes Moving Cars

Kalman Filter 0.38 0.31 0.27

Kalman ICP 0.18 0.18 0.29

ADH (Ours) 0.42 0.38 0.33
Table 1. Crispness scores based on the 3D models built using the velocity estimates of different tracking methods. A crisper model
generally correlates with greater tracking accuracy.

We see that, although the Kalman ICP method performs well for cars, it performs poorly for people and bikes. This is
likely due to the shape of people and bikes. Because cars have a smooth, convex shape, ICP is able is more easily find the
optimal alignment. On the other hand, people and bikes do not have well-defined faces, and bikes are highly non-convex,
leading ICP to get stuck in a local optimum and resulting in a poor alignment. The centroid-based Kalman filter performs
reasonably well on this metric, although it performed poorly in the metric from section 8.2. However, our method performs
the best on this metric across all object classes as well as on the previous metric. This evaluation demonstrates that our
method is robust to the class and shape of the object being tracked.

8.4. Qualitative Comparison

Figure 22 shows some examples where the ADH tracker outperforms the Kalman ICP baseline. Kalman ICP is initialized
as described above, in which the centroid of each point cloud is placed through a Kalman filter to predict the initial
alignment for ICP. Although this was the best method for initializing ICP among the methods that we tried in Section 8.2,
the initialization is often still poor. Each of the examples shown in Figure 22 are cases in which ICP begins with an incorrect
initialization. As a result, ICP converges to a poor local optimum. Furthermore, although the ICP baseline incorporates
a motion model both to obtain a good initialization and for post-alignment smoothing, the ICP optimization does not
incorporate a motion model into the alignment itself. As a result, the ICP alignment is often unrealistic according to the
motion model. For instance, the second and third examples in Figure 22 show that ICP has rotated the point cloud in a
manner that is unrealistic according to the motion model.

The ADH tracker deals with both of these issues. By performing a coarse-to-fine search, the ADH tracker avoids local
minima. The ADH tracker inflates the measurement noise proportional to the sampling resolution in order to smooth out the

26 Journal name 000(00)

objective function when sampling coarsely, which helps the model perform a global optimization. Second, each sample of
the ADH tracker is evaluated using both the measurement model and the motion model, and regions with a high probability
are sampled more finely. Thus our method incorporates the motion model when deciding where to sample, so unrealistic
alignments such as those shown by ICP in Figure 22 are less likely to occur.

ICP$Ini'aliza'on$ ICP$Es'mate$ ADH$Es'mate$

Fig. 22. Examples where the ADH tracker outperforms ICP initialized with a Kalman filter. Each row is a separate example of an
attempted alignment between red points and blue points. Left column: Initial alignment for ICP. Middle column: Final alignment from
ICP. Right column: Alignment using the ADH tracker. (Best viewed in color).

9. Conclusion

We have introduced a new technique called annealed dynamic histograms to robustly track moving objects in real time.
We have demonstrated that combining information from 3D shape, color, and motion allows us to track objects much more
accurately than using only one or two of these cues. We have also shown that grid-based methods can be made both fast
and accurate by annealing the measurement model as we refine our distribution. This approach also allows us to globally
explore the search space, avoiding the local minima of other approaches. For long-term autonomy in dynamic environments,
objects must be tracked under a wide variety of lighting, viewpoint changes, and occlusions, so robust tracking is crucial
for safe operation.

10. Acknowledgments

We would like to thank the Stanford Autonomous Driving Team and the Computational Vision and Geometry Lab, especially
Alex Teichman and Dave Jackson for useful discussions and suggestions, and Brice Rebsamen for maintaining our research
platform and code repository.

11. Funding

This work was supported by DARPA UPSIDE [grant number A13-0895-S002].

References

Azim, A. and Aycard, O. (2012), Detection, classification and tracking of moving objects in a 3d environment, in ‘Intelligent Vehicles

Symposium (IV), 2012 IEEE’, IEEE, pp. 802–807.

Burgard, W., Derr, A., Fox, D. and Cremers, A. B. (1998), Integrating global position estimation and position tracking for mobile robots:

the dynamic markov localization approach, in ‘Intelligent Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ International

Conference on’, Vol. 2, IEEE, pp. 730–735.

Running head right side 27

Chassis Systems Control LRR3: 3rd generation Long-Range Radar Sensor (2009).

Darms, M., Rybski, P. and Urmson, C. (2008), Classification and tracking of dynamic objects with multiple sensors for autonomous

driving in urban environments, in ‘Intelligent Vehicles Symposium, 2008 IEEE’, IEEE, pp. 1197–1202.

Estivill-Castro, V. and McKenzie, B. (2004), Hierarchical monte-carlo localization balances precision and speed, in ‘Australasian

Conference on Robotics and Automation’.

Feldman, A., Hybinette, M. and Balch, T. (2012), ‘The multi-iterative closest point tracker: An online algorithm for tracking multiple

interacting targets’, Journal of Field Robotics 29(2), 258–276.

Held, D., Levinson, J. and Thrun, S. (2013), Precision tracking with sparse 3d and dense color 2d data, in ‘Robotics and Automation

(ICRA), 2013 IEEE International Conference on’, IEEE, pp. 1138–1145.

Held, D., Levinson, J., Thrun, S. and Savarese, S. (2014), Combining 3d shape, color, and motion for robust anytime tracking, in

‘Proceedings of Robotics: Science and Systems’, Berkeley, USA.

Huang, J. and Mumford, D. (1999), Statistics of natural images and models, in ‘Computer Vision and Pattern Recognition, 1999. IEEE

Computer Society Conference on.’, Vol. 1, IEEE.

Kaestner, R., Maye, J., Pilat, Y. and Siegwart, R. (2012), Generative object detection and tracking in 3d range data, in ‘Robotics and

Automation (ICRA), 2012 IEEE International Conference on’, IEEE, pp. 3075–3081.

Konidaris, G. and Barto, A. (2006), Autonomous shaping: Knowledge transfer in reinforcement learning, in ‘Proceedings of the 23rd

international conference on Machine learning’, ACM, pp. 489–496.

Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., Fletcher, L., Frazzoli, E., Huang, A., Karaman, S. et al. (2008), ‘A

perception-driven autonomous urban vehicle’, Journal of Field Robotics 25(10), 727–774.

Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J., Langer, D., Pink, O., Pratt, V., Sokolsky, M., Stanek,

G., Stavens, D., Teichman, A., Werling, M. and Thrun, S. (2011), Towards fully autonomous driving: Systems and algorithms, in

‘Intelligent Vehicles Symposium (IV), 2011 IEEE’, pp. 163 –168.

Levinson, J. and Thrun, S. (2010), Unsupervised calibration for multi-beam lasers, in ‘International Symposium on Experimental

Robotics’.

Manz, M., Luettel, T., von Hundelshausen, F. and Wuensche, H.-J. (2011), Monocular model-based 3d vehicle tracking for autonomous

vehicles in unstructured environment, in ‘Robotics and Automation (ICRA), 2011 IEEE International Conference on’, IEEE, pp. 2465–

2471.

Marcello, R., Sorrenti, D. G. and Marchese, F. M. (2002), A robot localization method based on evidence accumulation and multi-

resolution, in ‘Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on’, Vol. 1, IEEE, pp. 415–420.

Moosmann, F. and Stiller, C. (2013), Joint self-localization and tracking of generic objects in 3d range data, in ‘ICRA’, pp. 1146–1152.

Odom, D. and Milanfar, P. (2006), Modeling multiscale differential pixel statistics, in ‘Electronic Imaging 2006’, International Society

for Optics and Photonics, pp. 606504–606504.

Olson, C. F. (2000), ‘Probabilistic self-localization for mobile robots’, Robotics and Automation, IEEE Transactions on 16(1), 55–66.

Olson, E. B. (2009), Real-time correlative scan matching, in ‘Robotics and Automation, 2009. ICRA’09. IEEE International Conference

on’, IEEE, pp. 4387–4393.

Petrovskaya, A. and Thrun, S. (2008), ‘Model based vehicle tracking for autonomous driving in urban environments’, Proceedings of

Robotics: Science and Systems IV, Zurich, Switzerland 34.

Randlov, J. and Alstrom, P. (1998), Learning to drive a bicycle using reinforcement learning and shaping, in ‘Proceedings of the Fifteenth

International Conference on Machine Learning’, pp. 463–471.

Rose, K. (1998), ‘Deterministic annealing for clustering, compression, classification, regression, and related optimization problems’,

Proceedings of the IEEE 86(11), 2210–2239.

Rusu, R. B. and Cousins, S. (2011), 3D is here: Point Cloud Library (PCL), in ‘IEEE International Conference on Robotics and Automation

(ICRA)’, Shanghai, China.

Ryde, J. and Hu, H. (2010), ‘3d mapping with multi-resolution occupied voxel lists’, Autonomous Robots 28(2), 169–185.

28 Journal name 000(00)

Sheehan, M., Harrison, A. and Newman, P. (2012), ‘Self-calibration for a 3d laser’, The International Journal of Robotics Research

31(5), 675–687.

Simmons, R. and Koenig, S. (1995), Probabilistic robot navigation in partially observable environments, in ‘IJCAI’, Vol. 95, pp. 1080–

1087.

Streller, D., Furstenberg, K. and Dietmayer, K. (2002), Vehicle and object models for robust tracking in traffic scenes using laser range

images, in ‘Intelligent Transportation Systems, 2002. Proceedings. The IEEE 5th International Conference on’, IEEE, pp. 118–123.

Sun, J., Xu, Z. and Shum, H.-Y. (2008), Image super-resolution using gradient profile prior, in ‘Computer Vision and Pattern Recognition,

2008. CVPR 2008. IEEE Conference on’, IEEE, pp. 1–8.

Teichman, A., Levinson, J. and Thrun, S. (2011), Towards 3d object recognition via classification of arbitrary object tracks, in ‘Robotics

and Automation (ICRA), 2011 IEEE International Conference on’, IEEE, pp. 4034–4041.

Thrun, S., Burgard, W., Fox, D. et al. (2005), Probabilistic robotics, Vol. 1, MIT press Cambridge.

Thrun, S., Fox, D., Burgard, W. and Dellaert, F. (2001), ‘Robust monte carlo localization for mobile robots’, Artificial intelligence

128(1), 99–141.

Velodyne Lidar HDL-64E Datasheet (2010).

Wojke, N. and Haselich, M. (2012), Moving vehicle detection and tracking in unstructured environments, in ‘Robotics and Automation

(ICRA), 2012 IEEE International Conference on’, IEEE, pp. 3082–3087.

Zitnick, C. L. (2012), Seeing through the blur, in ‘Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR)’, IEEE Computer Society, pp. 1736–1743.

	Introduction
	Related Work
	Tracking Pipeline
	Probabilistic Model
	State Space
	Dynamic Bayesian Network

	Tracking
	Measurement Model Derivation
	Tracking with color
	Motion Model
	Implementation

	Annealed Dynamic Histograms
	Derivation
	Annealing
	Using the Tracked Estimate
	Estimating Rotation

	System
	Results
	Choosing parameters
	Evaluation: Relative Reference Frame
	Dataset.
	Baseline Comparison.
	Sampling Analysis.
	Error Analysis.

	Evaluation: Model Crispness
	Qualitative Comparison

	Conclusion
	Acknowledgments
	Funding

