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I. INTRODUCTION

This document describes how to reproduce the evaluation
for 3D segmentation that was given in the paper: Held,
David, et al. "A Probabilistic Framework for Real-time 3D
Segmentation using Spatial, Temporal, and Semantic Cues."

II. EVALUATION

Dataset: We evaluate our segmentation method on the
KITTI tracking dataset [1, 2, 3]. We use sequences 0001
and 0013 to train our method and select parameters and the
remaining 19 sequences for testing and evaluation.

Although the KITTI tracking dataset has been made publicly
available, the dataset has typically been used to evaluate only
tracking and object detection rather than evaluating segmenta-
tion directly. However, segmentation is an important step of a
3D perception pipeline, and errors in segmentation can cause
subsequent problems for other components of the system.
Because the KITTI dataset is publicly available, we encourage
other researchers to evaluate their 3D segmentation methods
on this dataset using the procedure that we describe here.

Pre-processing As a pre-processing step, we remove the
points that belong to the ground using the method of Mon-
temerlo et al. [6]. Results may vary with different ground
detection methods, but unfortunately, we are unable to release
the code for this ground detection method at this time.

Evaluation Metric: The output of our method is a par-
titioning of the points in each frame into disjoint subsets
(“segments"), where each segment is intended to represent
a single object instance. The KITTI dataset has labeled a
subset of objects with a ground-truth bounding box, indicating
the correct segmentation. We wish to evaluate how well our
segmentation matches the ground-truth for the labeled objects.

To evaluate our segmentation, we assign a best-matching
segment to each ground-truth bounding box. For each ground-
truth bounding box gt, we find the set of non-ground points
within this box, Cgt. For each segment s, let Cs be the
set of points that belong to this segment. We then find the
best-matching segment to this ground-truth bounding box by
computing

s = argmax
s′

|Cs′ ∩ Cgt| (1)

The best-matching segment is then assigned to this ground-
truth bounding box for the evaluation metrics described below.

We describe on the project website how the intersection-
over-union metric on 3D points [11] is non-ideal for au-
tonomous driving because this score penalizes undersegmen-
tation errors more than oversegmentation errors. Instead, we

propose to count the number of oversegmentation and under-
segmentation errors directly. Roughly speaking, an underseg-
mentation error occurs when an object is segmented together
with a nearby object, and an oversegmentation error occurs
when a single object is segmented into multiple pieces. More
formally, we count the fraction of undersegmentation errors as

U =
1

N

∑
gt

1
( |Cs ∩ Cgt|

|Cs|
< τu

)
(2)

where 1 is an indicator function that is equal to 1 if the input
is true and 0 otherwise and where τu is a constant threshold.
We count the fraction of oversegmentation errors as

O =
1

N

∑
gt

1
( |Cs ∩ Cgt|
|Cgt|

< τo

)
, (3)

where τo is a constant threshold. In our experiments, we
choose τu = 0.5 to allow for minor undersegmentation errors
as well as errors in the ground-truth labeling. We use τo = 1,
since even a minor oversegmentation error causes a new (false)
object to be created. We do not evaluate oversegmentations or
undersegmentations when two ground-truth bounding boxes
overlap. In such cases, it is difficult to tell whether the
segmentation result is correct without more accurate ground-
truth segmentation annotations (i.e. point-wise labeling instead
of bounding boxes). Examples of undersegmentation and over-
segmentation errors are shown in Figure 1.
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Fig. 1. Examples of an undersegmentation error (top) and an oversegmenta-
tion error (bottom). Each color denotes a single segment, and the ground-truth
annotations are shown with a purple box, where each box represents a single
object instance. (Best viewed in color)

We then compute an overall error rate based on the total
number of undersegmentation and oversegmentation errors, as

E = U + λcO (4)



where λc is a class-specific weighting parameter that penalizes
oversegmentation errors relative to undersegmentation errors.
For our experiments we simply choose λc = 1 for all classes,
but λc can also be chosen for each application based on the
effect of oversegmentation and undersegmetation errors for
each class on the final performance.

Segmentation output: The output of our segmentation was
saved in a set of 21 files, one for each sequence in the KITTI
tracking dataset. Note that two of these sequences (0001 and
0013) were used for training and are not used as part of
the evaluation. Each file has one line for each ground-truth
segment. Each file also has a number of columns, as follows:

• frame: The KITTI frame number. Due to an error in our
processing, our segmentation begins on frame 2.

• type: The type of object, based on the KITTI label: Car,
Van, Truck, Pedestrian, Misc, Person sitting, Cyclist, or
Tram

• seg_score: Defunct
• pos_points: |Cs ∩ Cgt|
• blob_points: |Cs|
• gt_points: Number of points in the ground-truth bounding

box, before ground-detection.
• other_pos_points: |Cgt| − |Cs ∩ Cgt|
• label_id: Kitti label number
• track_id: Track ID assigned by our tracker
• distance: Euclidean distance between the center of the

ground-truth bounding box and the Velodyne
• n_matched_tracks:

∑
s′ 1 (|Cs′ ∩ Cgt| > 0)

• under_segmentation: Defunct
• id_switch: An indicator of whether the track ID associ-

ated with this bounding box has changed to a different
kitti label at this frame.

• attempted_correction: Defunct
• class_idx: The index of the class with the highest confi-

dence (0: bicyclists, 1: cars, 2: pedestrians)
• class_confidence: The probability of the class with the

highest confidence
• occluded: Whether the object is occluded in the image
• has_overlap: Whether this ground-truth bounding box

overlaps with another ground-truth bounding box
where 1 is an indicator function that is equal to 1 if the input
is true and 0 otherwise.

To process these files, run the MATLAB file segmenta-
tion_score.m with the directory of these files as input (see
the default arguments in segmentation_score.m as an exam-
ple). To compare multiple segmentations, run the MATLAB
file compare_segmentations.m (see the default arguments in
compare_segmentations.m as an example).
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