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Abstract—In order to track dynamic objects in a robot’s
environment, one must first segment the scene into a collection
of separate objects. Most real-time robotic vision systems today
rely on simple spatial relations to segment the scene into separate
objects. However, such methods fail under a variety of real-
world situations such as occlusions or crowds of closely-packed
objects. We propose a probabilistic 3D segmentation method that
combines spatial, temporal, and semantic information to make
better-informed decisions about how to segment a scene. We
begin with a coarse initial segmentation. We then compute the
probability that a given segment should be split into multiple
segments or that multiple segments should be merged into a
single segment, using spatial, semantic, and temporal cues. Our
probabilistic segmentation framework enables us to significantly
reduce both undersegmentations and oversegmentations on the
KITTI dataset [3, 4, 5] while still running in real-time. By
combining spatial, temporal, and semantic information, we are
able to create a more robust 3D segmentation system that leads
to better overall perception in crowded dynamic environments.

I. INTRODUCTION

A robot operating in a dynamic environment must identify
obstacles in the world and track them to avoid collisions.
Robotic vision systems often begin by segmenting a scene
into a separate component for each object in the environ-
ment [2, 11, 24]. Each component can then be tracked over
time to estimate its velocity and predict where each object
will move in the future. The robot can use these predictions
to plan its own trajectory and avoid colliding into any static
or dynamic obstacles.

Due to the real-time constraint on these systems, many 3D
robotic perception systems rely on simple spatial relationships
to find the objects in a scene [2, 11, 14, 24]. For instance, a
common strategy is to use proximity to group points together:
if two 3D points are sufficiently close, they are assumed to
be part of the same object, and if the points are far apart and
disconnected, they are assumed to belong to different objects.

However, spatial relations alone are not sufficient for dis-
tinguishing between objects in many real-world cases. For
example, in autonomous driving, it is common for a pedestrian
to get undersegmented together with a neighboring object,
such as a tree, a nearby car, or a building, as shown in
Figure 1 (top). If an autonomous vehicle is not aware of a
nearby pedestrian, the vehicle will have difficulty anticipating
the pedestrian’s actions, which could lead to a disastrous

collision. It is also common for a nearby object such as a
car to get oversegmented into multiple pieces, with the front,
side, and interior of the object being considered as separate
segments (Figure 1, bottom). This oversegmentation can lead
to poor tracking estimates, causing the autonomous vehicle to
incorrectly predict the future position of nearby objects.

Fig. 1. Top: Using only spatial cues, a person is segmented together with a
nearby building. By tracking this person over time, we segment it as a separate
object. Bottom: Using only spatial cues, a car is oversegmented into multiple
pieces. Using semantic and temporal information, we determine that these
multiple pieces all belong to a single object. Each color denotes a separate
object instance, estimated by the segmentation algorithm. (Best viewed in
color)

We present the first real-time 3D segmentation algorithm
that combines spatial, temporal, and semantic information in
a coherent probabilistic framework. A single frame of an
environment is often ambiguous, as it can be difficult to
determine if a segment consists of one object or multiple
objects. The temporal cues in our framework allow us to
resolve such ambiguities. By watching objects over time, we
obtain more information that can help us determine how to
segment the scene.

If we can recognize an object, then we can also incorporate
the object class into our framework to assist our segmentation.
At the same time, because we are using a probabilistic
framework, the semantic cues are optional, enabling us to
segment unknown objects: if we do not recognize an object,
then our semantic probabilities will be uninformative and our
framework will automatically rely on the spatial and temporal
information for segmentation.



Our method outputs an “instance segmentation”, i.e. a
partition of a collection of 3D points into a set of clusters, with
one cluster corresponding to each object instance in the scene.
These objects can then be individually tracked to estimate their
future positions and avoid collisions.

We apply this method to the KITTI dataset, which was
collected from a moving car on crowded city streets for
the purpose of evaluating perception for autonomous driv-
ing [3, 4, 5]. We show that our framework significantly reduces
both oversegmentation and undersegmentation errors, with
the total number of errors decreasing by 47%. Our method
runs in only 34 milliseconds per frame (not including the
initial coarse segmentation, which is an input to our method
and requires an additional 19.6 ms) and is thus suitable for
real-time use in robotic applications. By combining spatial,
semantic, and temporal information, we are able to create
a more robust perception pipeline that should lead to more
reliable autonomous driving. More information about our
approach can be found on our website: http://davheld.github.
io/segmentation3D/segmentation3D.html

II. RELATED WORK

Spatial segmentation. Most real-time 3D segmentation
methods only use the spatial distance between points in the
current frame for clustering [2, 11, 24], ignoring semantic
information as well as temporal information from previous
frames. However, because these methods only use the spatial
distance between points, they cannot resolve ambiguous cases
where an occlusion causes an object to become oversegmented
or when multiple nearby objects become segmented together.

Temporal segmentation. Some methods focus on seg-
menting objects that are currently moving [1, 17, 27]. For
example, Petrovskaya and Thrun [17] use “motion evidence”
to detect moving vehicles. After filtering out static objects,
clustering the remaining moving objects becomes simpler.
Another approach is to estimate the motion for each point in
the scene and then to cluster these motions [22, 8]. However,
these methods would not be able to segment a stopped car or
other objects that are currently stationary but may move in the
future.

An additional approach is to cluster an image into coherent
superpixels by enforcing spatial and temporal consistency [9,
28, 29]. However, these superpixels do not represent whole
objects, so a post-processing method must be used to find
the objects in the scene so that each object can be tracked
for autonomous driving or other robotics applications. Further,
most of these methods are applied to dense RGB-D images
from indoor scenes [9, 28, 29, 22, 8] and would not directly
apply to large outdoor scenes with sparse 3D sensors.

Semantic segmentation. Other papers have attempted to
incorporate semantic information for 3D segmentation. Many
of these methods can only segment objects of particular classes
that can be recognized by a detector [21, 13, 6]. Using our
probabilistic framework, semantic information is an optional
cue; we are able to use spatial and temporal information

to segment novel objects that we cannot identify, which is
important for robust autonomous driving in the real world.

Wang et al. [26] use a foreground/background classifier
to detect and segment objects. We compare to this method
and demonstrate that we achieve much better performance by
also incorporating temporal information. Further, their method
assumes that foreground objects are well-separated from each
other, which does not hold for crowded urban environments.

Point-wise labeling. Some papers apply a semantic label to
each individual point in the scene [12, 20]. For example, these
methods will give a label “person” to every point in a crowd of
pedestrians or “car” to every point in a group of cars, without
locating the individual objects in this group. The output of
these methods are less useful for autonomous driving, since
we need to be able to segment and track each object instance
in our environment so we can predict where the object will
go and avoid collisions.

Our approach. We are able to segment both known and
unknown objects, as well as objects that are either moving or
stationary. Each segment output by our method represents a
single object instance. Our real-time segmentation method is
thus suitable for autonomous driving and other mobile robot
applications, in which all objects in our environment must be
segmented so we can track each one and avoid collisions.

III. SYSTEM OVERVIEW

Given a stream of input data, we first perform ground-
detection, i.e. we determine which points belong to the ground
and which points belong to objects. Next, we apply a fast
initial segmentation method to cluster the non-ground points
into separate segments (see Section VI-D for details).

We modify these initial segments using our probabilistic
framework, splitting segments apart or merging segments
together using spatial, temporal, and semantic information.
Our framework computes the probability that a set of points
represents a single object or more than object. If we estimate
that a segment consists of more than one object, then we split
this segment apart; if we estimate that a group of segments
represents a single object, then we merge these segments
together. Our goal is to obtain a final set of segments where
each segment is estimated to represent a single object.

After obtaining the final segmentation for a given frame,
each segment is tracked and classified to further improve the
robot’s understanding of its environment. Various methods
for the ground-detection, initial segmentation, tracking, and
classification may be used; the methods used in our pipeline
are listed in Section VI-D.

IV. PROBABILISTIC FRAMEWORK

A. Segmentation Model

Our probabilistic framework estimates whether a segment
represents a single object or multiple objects, incorporating
the current observation, the estimated data association, and the
estimated segmentation of previous frames. We also optionally
incorporate semantic information if we can recognize the type
of object being segmented, as explained in Section IV-E.

http://davheld.github.io/segmentation3D/segmentation3D.html
http://davheld.github.io/segmentation3D/segmentation3D.html


At each time frame i, we observe a set of 3D points.
We define a segmentation at frame i as a partitioning of the
3D points in frame i into disjoint subsets (“segments”). We
represent this segmentation as Si = {si,1 · · · si,n}, where each
segment si,j is a subset of the 3D points observed at frame i.

For the current frame t, St represents our initial segmenta-
tion at frame t, whereas for previous frames tj ∈ {1...t− 1},
Stj represents the final estimated segmentation at frame tj .
For each segment si,j , let zi,j be a set of features (defined in
Section IV-D) computed over that segment. Then let Zi be the
union of all of these features, i.e. Zi = {zi,1 · · · zi,n}.

From our initial segmentation St at frame t, let st be a
set of segments formed by the union of one or more of our
initial segments st,j , i.e. st ⊆ St. Further, let zt be a set of
features computed based on the points in st. We will use the
term “segment” to refer to either a set of points, such as st,j ,
or a set of sets of points, such as st.

We want to estimate whether the points in st belong to
a single object or more than one object, and based on this
estimate, we will merge the segments in st together into a
single segment, or we can split the segments in st apart into
smaller segments, as explained in Section V. To determine
whether the points in st belong to a single object or more
than one object, we compute a probability p(Nst

t |Z1..t) where
Nst
t = true if the points in st belong to only one object, and

Nst
t = false if the points belong to more than one object. We

make the simplifying assumption that we can compute Nst
t

only from the features zt independently from the features of
all other segments at frame t, i.e.

p(Nst
t |Z1..t) = p(Nst

t |Z1..t−1, zt). (1)

We abbreviate Nst
t as Nt when it is clear which segment it

refers to.

B. Data Association

We accumulate segmentation evidence across time to better
estimate the probability that st consists of only one object.
To do so, we incorporate the data association astt , which
represents a matching between the points in st in the current
frame and a collection of points in the previous frame t − 1.
Suppose that the estimated final segmentation at frame t− 1,
given by St−1, is some partition of the points observed at
frame t−1 into n segments, St−1 = {st−1,1 · · · st−1,n}. Then
astt is an n-dimensional vector where the ith element is 1 if
a subset of the points in st “match” to a subset of the points
in st−1,i and 0 otherwise. The data association “matching”
indicates that these points belong to the same object or group
of objects viewed at different points in time. An illustration
of the data association is shown in Figure 5.

By determining which points across time correspond to
the same set of objects, the data association creates a set
of context-specific independences. Specifically, let astt,i be the
ith element of astt . If astt,i = 0, then the points in st−1,i
do not belong to the same object or group of objects as
the points in st. The 3D points corresponding to different
objects are assumed to be independent of each other. If we
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Fig. 2. The data association at,i creates context-specific independencies
visualized in this Bayes Net: ft is only dependent on ft−1,i if at,i = 1,
indicating that the corresponding 3D points from st and st−1,i may be part
of the same object or group of objects.

define ft = {zt, Nt} as the set of variables that correspond
to st (and we likewise define ft−1,i to correspond to segment
st−1,i), then ft and ft−1,i are only dependent on each other if
astt,i = 1, indicating that the points in st and st−1,i correspond
to the same object or set of objects. Thus we have the context-
specific independence

p(ft|astt,i = 0, ft−1,i) = p(ft|astt,i = 0). (2)

This relationship is visualized in Figure 2.
For a given value of astt , let st−1 be the set of all segments

from time t− 1 for which the ith element of astt is 1, i.e.

st−1 = {st−1,i : astt,i = 1, i ∈ {1...n}} (3)

where astt,i is the ith element of astt . Further, let zt−1 be the
features computed on the set of all points in st−1, let Nt−1
indicate whether the points in st−1 constitute a single object
or more than one object, and let ft−1 = {zt−1, Nt−1}. Let us
further define

¬st−1 = {st−1,i : astt,i = 0, i ∈ {1...n}}. (4)

and we similarly define ¬ft−1. Note that St−1 = st−1∪¬st−1.
Let us also define Ft−1 = {ft−1,¬ft−1}. Then by applying
equation 2 repeatedly for each i such that astt,i = 0, we have
that

p(ft|astt , Ft−1) = p(ft|astt , ft−1,¬ft−1) (5)
= p(ft|astt , ft−1). (6)

In other words, ft is independent of all segments for which
astt,i = 0 and their corresponding features ¬ft−1. We abbrevi-
ate astt as at when it is clear which segment it refers to.

The data associations shown in Figure 2 extend backward
through time to form a graph, where all nodes at time t−k are
connected to all nodes at time t− k − 1. Performing compu-
tations on this graph would be computationally intractable.
Instead, we take advantage of the fact that the points in
the previous frames have already been segmented using the
method described in this paper. As a result, each segment from



time t−k (for k ≥ 1) will usually be associated with (at most)
a single segment from time t − k − 1 with high probability;
if this were not the case, then the segmentation would likely
have been modified (either splitting or merging segments, as
described below) to make this true.

We can take advantage of this property to simplify our
computation. For segment st−k (for k ≥ 1), let st−k−1 be
the single most likely associated segment from time t−k−1,
with index i. We make the simplifying assumption that the
data association a

st−k

t−k can take on only 2 possible values:
either all elements are 0, or element i (corresponding to the
single most likely associated segment) is equal to 1 and the
rest are 0. Because we have already segmented frame t−k (and
prior frames) using our method, the other data associations are
assumed to have sufficiently low probability that they can be
ignored.

In other words, we assume that only two options are possible
with high likelihood: either the points in st−k and st−k−1
belong to the same object(s), or the points in st−k belong to
a new object that appeared at time t− k for the first time. In
either case, st−k is assumed to be independent of all points
from time t− k− 1 other than those in segment st−k−1. This
relationship is visualized in Figure 3.
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Fig. 3. An extension of Figure 2, we assume that for times t−k (for k ≥ 1)
each segment is associated with at most 1 previous segment, given by the
most likely data association. The segment is only associated with a previous
segment if at−k,i = 1, as shown by the context-specific independences in
this figure; otherwise the segment is assumed to correspond to a new object.

As shown in Figure 3, the segment st−1,i is thus associated
with an entire history of segments s1,i...st−2,i, given by the
most likely data association at each time step. Similarly, st−1
(defined in equation 3) is associated a history of segments
s1...t−2 with features z1..t−2. Further, st−1 is independent of
all prior segments that are not included in s1...t−2. We thus
have the independence relationship that

p(ft−1|F1..t−2) = p(ft−1|f1..t−2,¬f1..t−2)

= p(ft−1|f1..t−2) (7)

Based on these independence relationships (shown in Fig-
ure 3), we can now extend equation 6 to write

p(ft|astt , F1...t−1) = p(ft|astt , f1...t−1). (8)

The same relationship holds for any subset of the features in
ft or ft−1, as shown in Figure 3, so we have that

p(zt, Nt|astt , Z1...t−1) = p(zt, Nt|astt , z1...t−1). (9)

and thus by the laws of conditional independences we also
have that

p(zt|Nt, astt , Z1...t−1) = p(zt|Nt, astt , z1...t−1). (10)

Note that the features zt can be computed directly from
the observed points st, whereas the boolean variables Nt
are unobserved and must be inferred from the observations.
Conditioned on the data association at, these variables define
a Hidden Markov Model (HMM) shown in Figure 4, where the
observed variables are zt and the hidden variables are Nt. As
noted above and shown in this figure, the segment st−1 (with
corresponding variables zt−1 and Nt−1) is associated with a
history of segments s1...st−2 based on the most likely data
association, with associated features z1...zt−2 and boolean
variables N1...Nt−2.

Nt	Nt-1	Nt-2	Nt-3	

.	.	.			

Zt-3	 Zt-2	 Zt-1	 Zt	

at	at-1	at-2	

Fig. 4. The Hidden Markov Model (HMM) defined by the observed features
zt and the boolean variable Nt that indicates whether a segment consists
of one object or more than one object. The variables Nt are not observed
and must be inferred. The data association at defines the dependency of the
segments across time; see the text for more details.

An example of how the data association can be used for
segmentation is shown in Figure 5. In the top example, the
points in st have been incorrectly estimated to belong to
two separate objects, even though they are both part of the
same car. However, in the previous time frame, the car was
segmented correctly into a single segment st−1. By associating
these segments across time, we can obtain a better estimate
of whether the points in st should be merged together into a
single segment.

Likewise, the bottom example in Figure 5 shows two
people that have initially been incorrectly merged into a
single segment st. However, in the previous time frame, the
two people were each segmented separately. By associating
these segments across time, we can obtain a better estimate
of whether the points in st should be split apart into two
separate segments. In our framework, we do not assume that
the previous segmentation was correct; rather, we incorporate a
probabilistic estimate of the previous segmentation to improve
the current segmentation. Below, we will describe how we
compute the probabilities needed to make these decisions.

C. Estimating number of objects
Next we describe how we use our model to estimate Nt,

which indicates whether segment st consists of one object
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Fig. 5. Top: at time t, a car is initially oversegemented into two pieces.
We use our framework to estimate whether these two segments should be
merged together into a single segment st, by matching the segments to
corresponding segments at time t − 1. Bottom: At time t, two people are
initially undersegmented together. We use our framework to estimate whether
this segment should be split apart, by matching the segment to corresponding
segments at time t−1. Each color represents a separate segment. (Best viewed
in color)

or more than one object. We estimate this from the features
zt from the current segment as well as features Z1..t−1 from
past segments. We do not know the true data association for
the current frame, so we sum over different possible data
associations. Continuing from equation 1, we can write

p(Nt|zt, Z1..t−1) = η1
∑
at

p(zt|Nt, at, Z1..t−1) p(Nt, at|Z1..t−1)

(11)

where we have expanded the probability using Bayes’ rule,
with the normalization constant η1 = 1/p(zt|Z1..t−1). Al-
though at can take on 2n possible values, we show a tractable
way to compute this in Section VI-A.

The data association at matches the segment st with a
previous segment st−1 that represents the same object or
set of objects as the points in st. The segment st−1 has an
associated variable Nt−1 that represents whether the points in
st−1 correspond to a single object or to more than one object.
We would like to use our estimate of Nt−1 to allow us to
better estimate Nt. To do so, we can expand the final term of
equation 11 as

p(Nt, at|Z1..t−1) =
∑
Nt−1

p(Nt, at, Nt−1|Z1..t−1)

=
∑
Nt−1

p(Nt|at, Nt−1, Z1..t−1)

p(at|Nt−1, Z1..t−1) p(Nt−1|Z1..t−1)
(12)

The data association at is a matching between the
points in st and the points in St−1. Since the probability
p(at|Nt−1, Z1..t−1) in equation 12 does not condition on
any information from segment st, this probability is simply

computed as the prior p(at). We use a constant prior for the
data association, i.e. p(at) = η2, so we have

p(Nt, at|Z1..t−1) = η2
∑
Nt−1

p(Nt|at, Nt−1, Z1..t−1)

p(Nt−1|Z1..t−1). (13)

Based on the HMM from Figure 4, we also have that

p(Nt|at, Nt−1, Z1..t−1) = p(Nt|at, Nt−1). (14)

Thus we can simplify equation 13 as

p(Nt, at|Z1..t−1) = η2
∑
Nt−1

p(Nt|at, Nt−1) p(Nt−1|Z1..t−1)

(15)

Using the same assumptions as in equation 1, we can rewrite
the final term from equation 15 as

p(Nt−1|Z1..t−1) = p(Nt−1|zt−1, Z1..t−2) (16)

The expression on the right of equation 16 is similar to the
expression on the left side of equation 11 for the previous time
step (replacing t with t− 1), so we compute this recursively,
allowing us to accumulate segmentation evidence across time.

The term p(Nt|at, Nt−1) in equation 15 represents the
probability that a segmentation remains consistent across time.
This term corresponds to the transition probability in an
HMM. Although a segmentation usually remains consistent,
sometimes a single object can split to become more than
one object. For example, a person might dismount from a
bicycle; in this case, a single object (person-riding-bicycle)
now becomes two separate objects as the person moves away
from the bicycle. Conversely, a person can enter into a car, in
which case two objects (person and car) are now treated as a
single object.

The overall probability can now be written as:

p(Nt|zt, Z1..t−1) = η
∑
at

p(zt|Nt, at, z1..t−1)∑
Nt−1

p(Nt|at, Nt−1) p(Nt−1|zt−1, Z1..t−2)

(17)

where η = η1 η2. The three terms in equation 17 represent
our current measurement model, temporal consistency, and
our previous estimate, respectively. Note that these terms
correspond to those in the standard update equations for a
Bayes filter [25].

D. Measurement Model

The term p(zt|Nt, at, z1..t−1) of equation 17 represents the
probability of our current observation’s features zt, known
as a “measurement model”. For segment st, we define zt =
{zpt , zst } as a set of features for this segment, where zpt is the
position of the segment’s centroid and zst are a set of features
that represent the segment’s shape (defined below).



Assuming that the position and shape are independent, we
can now write this as

p(zt|Nt, at, z1..t−1) = pP (zpt |at, z1..t−1) pS(zst |Nt). (18)

We have eliminated the dependency of the first term on Nt
since the centroid’s position is not dependent on the number of
objects. We have further simplified our shape probability com-
putation by assuming that pS(zst |Nt, at, z1..t−1) = pS(zst |Nt).
Although in reality our current shape features zst depend on the
previous shape features zs1..t−1, this conditional independence
assumption will greatly simplify our calculations. These two
terms will be explained in more detail below. The overall
probability can now be written as:

p(Nt|zt, Z1..t−1) =η
∑
at

pP (zpt |at, z1..t−1) pS(zst |Nt)∑
Nt−1

p(Nt|at, Nt−1) p(Nt−1|zt−1, Z1..t−2).

(19)

1) Position Probability: In equation 19, we sum over the
different possible data associations at. Each data association
represents a matching between the set of points st and a
previous set of points, st−1 (where st−1 might be a union
of one or more of our previous segments). However, some
of the data associations are more likely than others. The
probability pP (zpt |at, z1..t−1) in equation 19 will allow us to
weight more highly the terms in the summation corresponding
to more likely data associations and down-weight the terms
corresponding to less likely data assocations.

The position probability, pP (zpt |at, z1..t−1), is computed
from the position of the (noisy) centroid observation zpt
compared to its predicted position, based on the estimated
object velocity. We represent the object state xt as its position
and velocity, and we integrate over the different states xt:

pP (zpt |at, z1..t−1) =

∫
xt

p(zpt |xt) p(xt|at, z1..t−1) dxt. (20)

This probability is computed using a Kalman Filter [25]. We
assume that we have modeled the previous distribution over
object states p(xt−1|z1..t−1) as a Gaussian with mean µ and
covariance Σ.

To compute this integral, we first perform the Kalman Filter
prediction step to get a prediction of the object’s current
position and velocity (see [25] for details). The resulting
prediction is given by a Gaussian with mean µ̄ = [µ̄v, µ̄x] and
covariance Σ̄, with the predicted mean velocity and position
given by µ̄v and µ̄x respectively. If we model the measurement
probability p(zpt |xt) by a Gaussian with measurement noise Q,
then equation 20 is the convolution of two Gaussians, which
results in another Gaussian. The probability is thus given by

pP (zpt |at, z1..t−1) = N (zpt ; µ̄, Σ̄ +Q). (21)

To compute this probability, we first shift the point cloud
from segment st−1 to its predicted position µ̄x to get the
predicted point cloud s̄t. Next, we find the point p̄i ∈ s̄t that

is nearest to the centroid zpt . We then compute the probability
as

pP (zpt |at, z1..t−1) = C1 exp
(
− 1

2
(zpt − p̄i)TΣ−1(zpt − p̄i)

)
(22)

where C1 = η3 |Σ|−1/2 and Σ = Σ̄ + Q (and η3 is a
normalization constant). We find that using the entire predicted
point cloud s̄t is more robust than simply using its centroid.

2) Shape Probability: The second term of equation 19,
pS(zst |Nt), is the probability of observing a measurement
with shape features zst (defined below) conditioned on the
number of objects in the points st. This probability is the
main term in equation 19 that directly relates to the number of
objects; the other terms are used to accumulate segmentation
evidence across time. Without any semantic information, this
probability is based only on the distance between points, as is
normally used in spatial clustering [2, 11, 24]. However, in our
framework, this probability is accumulated across time to give
a more accurate segmentation, as described in Section IV-C.

To compute this probability, we define zst to be the largest
gap d within the points st. Formally, we define d to be the
largest distance such that the points in st can be partitioned
into two disjoint subsets, st,1 and st,2, where

||pi, pj || ≥ d, ∀pi ∈ st,1, pj ∈ st,2, (23)

where || · || is the Euclidean distance. An example is shown
in Figure 6. A large value for the distance d implies that st
is more likely to consist of more than one object, whereas a
smaller value of d could be caused by an oversegmentation of
a single object. In practice, we only compute d when we are
considering merging two segments together (see Section V-B),
in which case d is the distance between the nearest points be-
tween the two segments (computed with a kd-tree); otherwise,
we use a constant value for d, which is chosen using cross-
validation.

d	

Fig. 6. An example of the gap d between a set of points.

Using statistics from our training set, we find that the
distance d between pairs of different objects varies according
to an exponential distribution

pD(d|¬Nt) =
1

µD
exp(−d/µD), (24)

where µD is a parameter determined by our training set. On
the other hand, occlusions or sensor noise can cause a single
object to be oversegmented into multiple pieces that may have
a gap of d between the pieces. We model the probability of



observing an oversegmentation of a single object with a gap
of d between two pieces by an exponential distribution

pD(d|Nt) =
1

µS
exp(−d/µS), (25)

where µS is determined using cross-validation on our training
set. Typically we have that µD > µS based on the intuition
described above: a larger gap between points is indicative
that the points may belong to multiple objects. The shape
probability is then set to be equal to this distribution:

pS(zst |Nt) = pD(d|Nt). (26)

E. Semantics

In the previous sections we have used spatial and temporal
information (accumulating segmentation evidence across time)
to estimate the segmentation. In this section we show how to
incorporate semantic information: if we can recognize the type
of object for a given segment, this should give us additional in-
formation about how to segment the scene. On the other hand,
if we cannot recognize the object, then the probabilistic model
naturally reverts to the model of Sections IV-A through IV-D
that incorporates only spatial and temporal information.

We assume that we have a segment classifier p(c|zc1..t) that
computes the probability that the set of segments s1..t is some
class c, based on a set of features zc1..t. To use the classifier, we
must sum over class labels. Equation 11 can now be rewritten
as

p(Nt|zt, Z1..t−1) =η1
∑
at

∑
c

p(zt|Nt, at, c, Z1..t−1)

p(Nt, at, c|Z1..t−1). (27)

The second term of equation 27 can be expanded as

p(Nt, at, c|Z1..t−1) = p(Nt, at|Z1..t−1) p(c|Nt, at, Z1..t−1).
(28)

For the second term of equation 28, if the data association
is given then the class label c is only dependent on the cor-
responding matching segments s1..t−1 (based on equation 8),
so we compute this term as p(c|at, zc1..t−1) using the segment
classifier.

We now compute a more accurate measurement probability,
since we are also conditioning on the class label c. For
example, we now compute equation 25 as

pD(d|Nt, c) =
1

µS,c
exp(−d/µS,c), (29)

where the parameter µS,c can vary based on the class label.
For example, for a car, an oversegmentation might reasonably
cause a 15 cm gap between points, whereas for a single person,
only a 3 cm gap might be considered reasonable. We choose
µS,c for each class using cross-validation on the training set.

We also incorporate more information about the object
shape into the computation of pS(zst |Nt, c), since we are
conditioning on the object class. Although a complex shape
model can be used, for sake of efficiency we use the volumetric
size of the segment st. We first compute the length and width

(l1, l2) of a bounding box fit to the segment st. We now
define zst to be the set {d, l1, l2}, where d was defined in
Section IV-D2. For each class, we model the size of an average
segment for that class by a Gaussian with parameters µi,c and
σi,c along each dimension i. However, a partially occluded
segment may appear smaller than this; thus, we compute the
probability along each dimension as

pV (li|Nt, c) = η4

{
exp

(
−(li−µi,c)

2

2σ2
i,c

)
, if li ≥ µi,c

1, otherwise.
(30)

where η4 is a normalization constant. If Nt = false (i.e. the
points in st consist of more than one object), we expect the
segment to be bigger than average with a large variance. We
thus compute this probability as

pV (li|¬Nt, c) = N (li;µ
′
i,c, σ

′
i,c) (31)

with µ′i,c = k1µi,c and σ′i,c = k2σi,c for constants k1, k2 > 1
chosen using cross-validation on our training set. We can now
replace the shape probability from equation 26 with

pS(zst |Nt, c) =pD(d|Nt, c)
∏
i

pV (li|Nt, c). (32)

Note that one of the classes may be “unknown.” When we
condition on the “unknown” class, then the size probability
pV (li|Nt, c) will be uninformative; however, the probabilistic
models from Sections IV-A through IV-D are still used. Thus,
our segmentation model benefits when we recognize the object
class, but we can still segment the scene even for unknown
objects.

V. SEGMENTATION ALGORITHM

We now describe how we use the probabilistic model
described above, combining spatial, temporal, and (optionally)
semantic information to improve our scene segmentation.

A. Splitting

After obtaining an initial coarse segmentation, we iterate
over all of our initial segments st and compute the probability
p(Nt|zt, Z1..t−1) using equation 19 to determine whether the
segment should be further split. Although the initial coarse
segmentation might only use spatial information, the com-
putation of p(Nt|zt, Z1..t−1) also incorporates semantic and
temporal information, allowing us to make a more informed
decision about how to segment the points in st. We defined
Nt = false if the points in st belong to more than one
object. Thus if p(¬Nt|zt, Z1..t−1) > 0.5, we conclude that
the segment st represents more than one object and should
be split into smaller segments. The details of this splitting
operation are explained in Section VI-C.

B. Merging

After all of our segments have been split using spatial,
semantic, and temporal information, some objects may have
become oversegmented. We now use our probabilistic model
to determine when to merge some of these segments back
together. To do this, we iterate over pairs of segments st,i



and st,j , and we propose a merge of these segments to create
a single merged segment st,ij = st,i ∪ st,j with features
zt,ij . We then compute the probability p(Nt|zt,ij , Z1..t−1) for
this proposed merged segment, again using equation 19. If
p(Nt|zt,ij , Z1..t−1) > 0.5, then we conclude that these two
segments are actually part of one object and we merge them
together; otherwise, we keep these two segments separate. We
continue to merge segments until no more segments can be
merged, meaning that our segmentation has converged.

VI. IMPLEMENTATION DETAILS

A. Approximations

In order to make our method run in real-time, we have
to perform a number of approximations. For example, in
equation 11, we sum over all data associations for segment st.
However, segment st can match to any number of segments
from the previous frame; if there are n segments in the
previous frame, then there are 2n possible data associations.

However, it is not necessary to compute all of these as-
sociations, since we only want to know whether segment st
consists of one object or more than object. Therefore, we
simplify the problem by only considering matches to either
single segments, to pairs of segments, or to no segments from
the previous frame. Formally, we only consider values of at
where 0, 1, or 2 elements are equal to 1 and the rest are equal
to 0. Thus we only need to consider n2 +n+ 1 potential data
associations, making this summation much faster to compute.
Further, if a segment from the previous frame is sufficiently
far away from the current segment, then it will likely not
contribute very much to this probability, so we do not need to
consider this segment for data association.

Additionally, when we match to a single segment in the
previous frame, we use the prior probability in the recursive
computation, i.e. p1(Nt−1|zt−1, Z1..t−2) ≈ p1(Nt−1), which
speeds up our method at little cost in accuracy. We still com-
pute the probability p(Nt−1|zt−1, Z1..t−2) recursively when
we consider a data association to multiple prior segments.

We precompute the class probability p(c|at, zc1..t−1) for
each individual segment st−1. For efficiency reasons, we
therefore do not use semantics when conditioning on a value
of at such that st matches to more than one previous segment.

B. Lazy computation

Normally, when using a Bayes filter, we take advantage of
the Markov property: when computing frame t, we only need
information from frame t − 1, so we do not need to keep
any information from prior frames. Normally, one would pre-
compute all information at time t− 1 that one might need for
time t. However, in our segmentation framework, we only need
a subset of the information from the previous frame, but we
cannot determine which subset in advance. Thus, we instead
perform a lazy computation: we keep the last T frames of data,
and we make use of the prior information only as needed for
our recursive computation p(Nt−1|zt−1, Z1..t−2). This allows
our method to be much more efficient, because we do not

perform computations from prior frames that are not needed
by our framework.

C. Splitting Operation

As described above, we use our probabilistic framework
to decide which segments st represent more than one object
and therefore must be split into smaller segments. Once the
decision to split segment st is made, the segment can be split
using a variety of methods. We split the segment using spatial
and temporal information as described below.

1) Temporal Splitting: At a high level, our temporal split-
ting method matches the segment st in the current frame to
segments from the previous frame. If more than one segment
from the previous frame matches to segment st with high
probability, then we split st based on the shape of those
previous segments. For example, if a crowd of pedestrians
in the current frame matches to separate pedestrian segments
in the previous frame, then we try to associate each 3D point
in the crowd to a 3D point in an individual pedestrian in the
previous frame. We then use the associations to split the crowd
into multiple segments, where each segment consists of all
3D points that were matched to the same previously observed
pedestrian.

Specifically, we first find the segments st−1,1 · · · st−1,n
from the previous frame that have a strong match to the
segment st in the current frame according to equation 22. Next,
we compute whether these segments from the previous frame
are likely to represent different objects; they may have merely
been the result of a previous oversegmentation. To do this, we
take all pairs of these matching segments st−1,i and st−1,j and
we merge each pair into a single segment st−1,ij . We then
compute p(Nt−1|zt−1,ij , S1..t−2) for this merged segment
using equation 19. If p(¬Nt−1|zt−1,ij , S1..t−2) > 0.5, then we
assume that st−1,i and st−1,j belong to two different objects
and can be used for temporal splitting. We then find the set
of all such segments st−1,1 · · · st−1,m with a strong match to
st that are all estimated to represent different objects.

To perform the split, for each point in the current frame
pi ∈ st, we compute the probability pP (pi|at, z1..t−1,j) using
equation 22 that this point matches to each segment st−1,j
from the previous frame. We assign point pi to the segment
with the highest probability, and then the point assignments
define a set of m new segments that get created. Using
this approach, we split segment st into m new segments by
matching the points in st to segments from the previous frame.

2) Spatial Splitting: The temporal splitting process de-
scribed above may not lead to the segment st being split
into multiple segments, for various reasons. For example, the
segment st may not match to multiple previous segment with
high probability.

In such a case, we will split segment st using spatial
information, using a smaller threshold than was used in our
initial segmentation. Note that we would not want to apply
such a small threshold to all segments; however, we have
determined using semantic and temporal information that
segment st is too large, so a smaller threshold may be used. In



our implementation, we split segment st using the Euclidean
clustering method in PCL [18, 19], with a clustering threshold
based on the sensor resolution r, ensuring that all points in
each segment are at least a distance of k3 r from all points
in a neighboring segment, for some constant k3 chosen using
our training set.

D. Pre- and Post-processing

As a pre-processing step, we remove the points that belong
to the ground using the method of Montemerlo et al. [15]. The
initial coarse segmentation for our method is obtained using
the Flood-fill method of Teichman et al. [24], extended to
use a 3D obstacle grid. After segmentation, we perform data
association using the position probability of Section IV-D1.
We next estimate a velocity for each object using the tracker
of Held et al. [7]. Finally, we classify these segments using the
boosting framework of Teichman and Thrun [23], and we use
the same classes as in that reference: pedestrians, bicyclists,
cars, and background (which we refer to as unknown). The
velocity and classification estimates are used to provide tem-
poral and semantic cues to improve the segmentation, as we
have described. We find the components listed here to be both
fast and accurate; however, any method for ground-detection,
tracking, the initial coarse segmentation, and 3D classification
may be used.

VII. EVALUATION

Below we discuss our quantitative evaluation. A video
demonstrating our segmentation performance can be found on
the project website.

Dataset: We evaluate our segmentation method on the
KITTI tracking dataset [3, 4, 5]. The KITTI dataset was
collected from a moving car on city streets in Karlsruhe,
Germany for the purpose of evaluating perception for au-
tonomous driving. The 3D point clouds are recorded with a
Velodyne HDL-64E 64-beam LIDAR sensor, which is often
used for autonomous driving [15, 16, 26]. This dataset is
publicly available and consists of over 42,000 3D bounding
box labels on almost 7,000 frames across 21 sequences.
Although the bounding boxes do not create point-wise accurate
segmentation labels, the segments produced by these bounding
boxes are sufficiently accurate to evaluate our method.

We use 2 of these sequences to train our method and select
parameters, and the remaining 19 sequences are used for
testing and evaluation. The specific parameter values chosen
using our training set are listed in the project website.

Although the KITTI tracking dataset has been made publicly
available, the dataset has typically been used to evaluate only
tracking and object detection rather than evaluating segmenta-
tion directly. However, segmentation is an important step of a
3D perception pipeline, and errors in segmentation can cause
subsequent problems for other components of the system.
Because the KITTI dataset is publicly available, we encourage
other researchers to evaluate their 3D segmentation methods
on this dataset using the procedure that we describe here.

Evaluation Metric: The output of our method is a par-
titioning of the points in each frame into disjoint subsets
(“segments”), where each segment is intended to represent
a single object instance. The KITTI dataset has labeled a
subset of objects with a ground-truth bounding box, indicating
the correct segmentation. We wish to evaluate how well our
segmentation matches the ground-truth for the labeled objects.

To evaluate our segmentation, we first find the segment
from our segmentation that best matches to each ground-truth
bounding box. For each ground-truth bounding box gt, let
Cgt be the set of non-ground points within this box. For each
segment s from our segmentation, let Cs be the set of points
that belong to this segment. We then find the segment that best
matches to this ground-truth bounding box by computing

s = arg max
s′

|Cs′ ∩ Cgt| (33)

The best-matching segment is then assigned to this ground-
truth bounding box for the evaluation metrics described below.

We describe on the project website how the intersection-
over-union metric on 3D points [26] is non-ideal for au-
tonomous driving because this score penalizes undersegmen-
tation errors more than oversegmentation errors. Instead, we
propose to count the number of oversegmentation and under-
segmentation errors directly. Roughly speaking, an underseg-
mentation error occurs when an object is segmented together
with a nearby object, and an oversegmentation error occurs
when a single object is segmented into multiple pieces. More
formally, we count the fraction of undersegmentation errors as

U =
1

N

∑
gt

1
( |Cs ∩ Cgt|

|Cs|
< τu

)
(34)

where 1 is an indicator function that is equal to 1 if the input
is true and 0 otherwise and τu is a constant threshold. We
count the fraction of oversegmentation errors as

O =
1

N

∑
gt

1
( |Cs ∩ Cgt|
|Cgt|

< τo

)
, (35)

where τo is a constant threshold. In our experiments, we
choose τu = 0.5 to allow for minor undersegmentation errors
as well as errors in the ground-truth labeling. We use τo = 1,
since even a minor oversegmentation error causes a new (false)
object to be created. We do not evaluate oversegmentations or
undersegmentations when two ground-truth bounding boxes
overlap. In such cases, it is difficult to tell whether the
segmentation result is correct without more accurate ground-
truth segmentation annotations (i.e. point-wise labeling instead
of bounding boxes). Examples of undersegmentation and over-
segmentation errors are shown in Figure 7.

We then compute an overall error rate based on the total
number of undersegmentation and oversegmentation errors, as

E = U + λcO (36)

where λc is a class-specific weighting parameter that penalizes
oversegmentation errors relative to undersegmentation errors.
For our experiments we simply choose λc = 1 for all classes,



Undersegmenta+on	 Correct	

Oversegmenta+on	 Correct	

Fig. 7. Examples of an undersegmentation error (top) and an oversegmenta-
tion error (bottom). Each color denotes a single segment, and the ground-truth
annotations are shown with a purple box, where each box represents a single
object instance. (Best viewed in color)

but λc can also be chosen for each application based on the
effect of oversegmentation and undersegmetation errors for
each class on the final performance.

VIII. RESULTS

Baselines: We compare our segmentation method to a
number of baseline methods. First, we compare to the Flood-
fill method of Teichman et al. [24], which is also used as a
pre-processing step for our method. We also compare to the
Euclidean Clustering (EC) method of Rusu [18], which was
applied to segmentation of urban scenes in Ioannou et al. [10].
We evaluate the method of Rusu [18] using cluster tolerances
of 0.1 m, 0.2 m, or 1 m (EC 0.1, EC 0.2, EC 1).

Finally, we compare to the method of Wang et al. [26],
which also incorporates semantic information into the segmen-
tation. Because the code of Wang et al. [26] was not available,
we re-implemented their method. We classify segments using
the method of Teichman and Thrun [23]. The initial segmenta-
tion for this method is obtained using Flood-fill [24], and the
post-processing step is obtained using Euclidean Clustering
with a dynamic cluster tolerance chosen based on the sensor
resolution. This setup was the best-scoring implementation of
their method that we were able to achieve. We experiment
with three different parameter settings for this method (Wang1,
Wang2, Wang3).

Baseline Comparison: Our method operates on the full
point-cloud in real-time, and we improve the segmentation
at all distances. However, our analysis focuses on segments
within 15 m because these are the objects that our autonomous
vehicle will most immediately encounter.

The segmentation evaluation is shown in Figure 8, for
segments within 15 m. Combining oversegmentation and un-
dersegentation errors, our method has the lowest error rate of
10.2%, compared to the Flood-fill baseline [23] with 19.4%.
Our method thus reduces the total number of oversegmentation
and undersegmentation errors by 47%, demonstrating the ben-
efit of combining spatial, temporal, and semantic information
for 3D segmentation. Our method runs in real-time, taking an
average of 33.7 ms per frame, or 29.7 Hz, not including the
initial coarse segmentation of [24] which requires an additional
19.6 ms.
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Fig. 8. Oversegmentation vs Undersegmentation errors for a variety of
segmentation methods. Best-performing methods appear in the lower-left
corner of the graph.

The Euclidean Clustering baselines achieved error rates of
23%, 26%, or 40% (for different parameter settings). The
method of Wang et al. [26] achieved error rates of 20.9%,
21.3% or 22.3% (for different parameter settings). Although
this method incorporates semantic information, they make
assumptions that do not hold in crowded environments. Their
method assumes that, after removing the ground points and
background objects, the remaining foreground objects can be
segmented using a spatial clustering approach. Their underly-
ing assumption is that foreground objects tend to remain sep-
arated from each other in 3D space. Although this assumption
may hold true for cars, it does not hold true for pedestrians,
which often stand in crowds. Furthermore, pedestrians and
bicyclists may move close to parked cars, or they may move
past cars at a cross-walk, causing the assumptions of this
method to fail to hold.

Ablative analysis: To understand the cause for the improve-
ment in performance, we separately analyze the benefit of
using only temporal information and only semantic informa-
tion, shown in Table I. As can be seen, adding either temporal
or semantic information alone results in small improvements
in performance. However, the largest gains are achieved by
combining spatial, semantic, and temporal information, thus
showing that all three components are important for the
accuracy of our system.

Method % Errors (< 15 m) % Errors (all)
Spatial only [24] 19.4 11.6
Spatial + Temporal 16.4 10.8
Spatial + Semantic 15.4 10.8
Spatial + Semantic + Temporal 10.2 8.2

TABLE I
SEGMENTATION ACCURACIES FOR VARIOUS VERSIONS OF OUR METHOD.

Performance Analysis: We evaluate the effect of classi-
fication on segmentation by separately evaluating our seg-
mentation performance on objects that we classify correctly
compared to objects that we classify incorrectly. For objects



that we classify correctly, we reduce the segmentation errors
by 48.4%, compared to 5.8% for objects that we classify
incorrectly (for objects at all distances). Thus, improving the
classification accuracy can lead to significant gains in our
segmentation performance, when using our method which
combines spatial, temporal, and semantic information.

Effect on Tracking: Finally, we show the effect of seg-
mentation accuracy on object tracking. In the KITTI tracking
dataset, the ground-truth bounding boxes are also annotated
with object IDs, so we are able to compute the number of
ID switches of our system. Using our segmentation method,
we get 25% fewer ID switches compared to the baseline [24]
Thus, accurate segmentation is also important for accurate
tracking. Because segmentation occurs at the beginning of
the perception pipeline, errors in segmentation can propagate
throughout the rest of the system, and improving segmentation
will improve other aspects of the system such as tracking, as
we have shown.

IX. CONCLUSION

To perform accurate 3D segmentation, it is not sufficient to
only use the spatial distance between points, as there will be
many ambiguous cases caused by occlusions or neighboring
objects. Our method is able to incorporate spatial, semantic,
and temporal cues in a coherent probabilistic framework for
3D segmentation. We are able to significantly reduce the num-
ber of segmentation errors while running in real-time. Robotic
systems should thus combine spatial, temporal, and semantic
information to achieve accurate real-time segmentation and
more reliable perception in dynamic environments.
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