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I. EVALUATION METRIC

To evaluate our segmentation, we assign a best-matching
segment to each ground-truth bounding box. For each ground-
truth bounding box gt, we find the set of non-ground points
within this box, Cgt. For each segment s, let Cs be the
set of points that belong to this segment. We then find the
best-matching segment to this ground-truth bounding box by
computing

s = argmax
s′

|Cs′ ∩ Cgt| (1)

The best-matching segment is then assigned to this ground-
truth bounding box for the evaluation metric described in our
paper, as well as for the metric described below.

Some previous works have evaluated 3D segmentation using
the intersection-over-union metric on 3D points [5]. Note that
our method segments the entire scene, as opposed to the
method of Wang et al. [5], so the evaluation metric from Wang
et al. [5] does not directly apply. However, we could modify
the intersection-over-union metric [5] as follows: we can
compute the fraction of ground-truth bounding boxes which
have an intersection-over-union score less than a threshold
τIOU , as

EIOU =
1

N

∑
gt

1
( |Cs ∩ Cgt|
|Cs ∪ Cgt|

< τIOU

)
, (2)

where 1 is an indicator function that is equal to 1 if the input is
true and 0 otherwise. In our experiments, we set τIOU = 0.5.

However, we find that the intersection-over-union evaluation
metric [5] is non-ideal for autonomous driving because this
score penalizes undersegmentation errors more than overseg-
mentation errors. For example, suppose a person is underseg-
mented together with a large building; the intersection-over-
union score will be extremely low. On the other hand, suppose
that the person is instead oversegmented into two pieces. The
intersection-over-union score for the larger segment will often
still be above our threshold and thus this oversegmentation
will not be penalized. In practice, we find that optimizing our
hyperparameters for the intersection-over-union metric causes
the number of undersegmentation errors to decrease while
increasing the number of oversegmentation errors.

Regardless, if we use the intersection-over-union metric of
Equation 2, we get 9% segmentation errors, compared to
the best baseline performance of 16% [4]. When analyzing
segments within 15 m of the ego-vehicle, the improvement is
even more dramatic: we get 6% segmentation errors, compared
to a baseline of 17% [4], thus reducing the absolute number
of errors by 62%. Nearby objects are most important for
autonomous driving because these are the objects that will
contribute the most to immediate path-planning decisions.
Thus, even though this metric is non-ideal, we still show
that our approach can outperform the baseline methods when
evaluated using this metric.

II. PARAMETERS

As mentioned in the main text, we evaluate our segmen-
tation method on the KITTI tracking dataset [1, 2, 3]. This
dataset consists of a total of 21 sequences. We use sequences
0001 and 0013 to train our method and select parameters and
the remaining 19 sequences for testing and evaluation.

We choose the parameters for our method using a grid-
search on the training set, and the resulting parameter values
are listed in Table I. The parameter p(Nt) is the prior probabil-
ity that a set of points obtained from our initial segmentation
belongs to just one object. The parameter p(zpt |at = ∅) is the
probability of observing a set of points at a given position
given that these points don’t match to any previous segment.
The parameter p1(zt|Nt, at, z1...t−1) is the probability of
observing segment st as a single segment from our initial
segmentation, given that st is only one object.

The parameter p(Nt|at, Nt−1) is the probability that a
segment from the previous frame that represents a single
object still represents a single object in the current frame.
The number of objects can change if, for example, a person
dismounts a bicycle or exits a car or if there was a previous
undersegmentation error. The parameter p(¬Nt|at,¬Nt−1) is
the probability that more than one segment from the previous
frame represents more than one object in the current frame.
The number of objects can change if a person mounts a bicycle
or enters a car or due to a previous oversegmentation error.

The parameter τs is a threshold that we use for tempo-
ral splitting, i.e. we try to perform temporal splitting with



any segment st−1 for which p(zt|at, z1...t−1) > τs. The
parameter t0 is the frame number to begin using temporal
and semantic information. Prior to that, our classification and
velocity estimates are assumed to be too inaccurate to use
as cues for segmentation. The parameter µS is used by our
shape probability distribution when the class of the object
is unknown, and µS,c is used when the class is known. The
parameter µD is also used by our shape probability distribution
and was computed by fitting a distribution over distances
between pairs of objects in our training set (as opposed to the
other parameters which were chosen using cross-validation on
our training set).

The parameters µi,c, σi,c, k1, and k2 are used in equations
18 and 19 for the volumetric shape distribution. The parameter
k3 is used for spatial splitting, ensuring that all points in each
segment are at least k3 r from all points in a neighboring
segment, based on the sensor resolution r.

The parameter nmin is the minimum number of points for a
segment to be created using temporal splitting. The parameter
T is the length of the past history that we use for the recursive
computation from equation 6 (recall that we perform this
computation as-needed in a lazy manner). The 2 sequences
that were used in choosing these parameters are distinct from
the 19 sequences that were used for testing.

Parameter Value
p(Nt) 0.99
p(zpt |at = ∅) 0.05
p1(zt|Nt, at, z1...t−1) 0.6
p(Nt|at, Nt−1) 0.6
p(¬Nt|at,¬Nt−1) 0.999
τs 0.5
t0 2
µS 0.03 m
µS,c, c = car 0.15 m
µD 7.4 m
µi,c, i = length, c = person 0.6 m
σi,c, i = length, c = person 0.4 m
µi,c, i = width, c = person 0.4 m
σi,c, i = width, c = person 0.1 m
µi,c, i = length, c = bike 1.5 m
σi,c, i = length, c = bike 0.5 m
µi,c, i = width, c = bike 1.5 m
σi,c, i = width, c = bike 1 m
µi,c, i = length, c = car 3 m
σi,c, i = length, c = car 2.5 m
µi,c, i = width, c = car 2 m
σi,c, i = width, c = car 0.1 m
k1 2
k2 10
k3 4
nmin 10
T 10

TABLE I
PARAMETER VALUES, CHOSEN USING OUR TRAINING SET.
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