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Abstract—Although object tracking has been studied for
decades, real-time tracking algorithms often suffer from low ac-
curacy and poor robustness when confronted with difficult, real-
world data. We present a tracker that combines 3D shape, color
(when available), and motion cues to accurately track moving
objects in real-time. Our tracker allocates computational effort
based on the shape of the posterior distribution. Starting with
a coarse approximation to the posterior, the tracker successively
refines this distribution, increasing in tracking accuracy over
time. The tracker can thus be run for any amount of time, after
which the current approximation to the posterior is returned.
Even at a minimum runtime of 0.7 milliseconds, our method
outperforms all of the baseline methods of similar speed by at
least 10%. If our tracker is allowed to run for longer, the accuracy
continues to improve, and it continues to outperform all baseline
methods. Our tracker is thus anytime, allowing the speed or
accuracy to be optimized based on the needs of the application.

I. INTRODUCTION

Many robotics applications are limited in what they can
achieve due to unreliable tracking estimates. For example, an
autonomous vehicle driving past a row of parked cars should
know if one of these cars is about to pull out into the lane.
Current state-of-the-art trackers give noisy estimates of the
velocity of these vehicles, which are difficult to track due to
heavy occlusion and viewpoint changes. Additionally, without
robust estimates of the velocity of nearby vehicles, merging
onto or off of highways or changing lanes become formidable
tasks. Similar issues will be encountered by any robot that
must act autonomously in crowded, dynamic environments.

Our tracker makes use of the full 3D shape of the object
being tracked, which allows us to robustly track objects
despite occlusions or changes in viewpoint. We place the 3D
shape information in a probabilistic framework, in which we
combine cues from shape, color, and motion. As we will show,
adding color and motion information gives a large benefit
to our system compared to using the 3D shape alone. This
information is especially useful for distant objects or objects
under heavy occlusions, when detailed 3D shape information
may not be available.

We make use of a grid-based method to sample velocities
from the state space. Traditional grid-based approaches are
too slow to track multiple objects in real-time. We are able to
finely sample from a large grid in real-time through the use of a
novel method called annealed dynamic histograms. We start by
sampling from the state space at a coarse resolution, using an
approximation to the posterior distribution over velocities. As
the sampling resolution increases, we anneal this distribution,

Fig. 1. Our method tracks moving objects very accurately, as seen by these
models generated from successive frame-to-frame alignments from our tracker.
The top row shows the individual frame of the tracked object with the largest
number of points. The bottom row shows the model created by our tracker.

and the approximate distribution approaches the true posterior.
At any point, the current approximation to the posterior can
be returned, with tracking resolution or runtime chosen based
on the needs of the application.

In this paper we present a number of novel contributions.
First, we introduce a new technique called annealed dynamic
histograms to globally explore the state space in real-time.
This method allows our tracker to estimate object velocities
significantly more accurately than state-of-the-art approaches.
We also present a novel derivation of a measurement model
using the idea of a latent surface, which gives us insight into
how to select the model parameters. We extend this model
to optionally include color, allowing us to combine color, 3D
shape, and motion in a coherent probabilistic framework. By
combining these different cues, our tracker is more robust to
changes in viewpoint and occlusions. Finally, we perform a
detailed quantitative analysis of how our method compares
to state-of-the-art tracking methods when tested on a large
number of tracked objects of different types (people, bikes,
and moving cars) over varying levels of lighting, viewpoint
changes, and occlusions. One of our evaluation metrics in-
volves computing the crispness of different object models
generated using our tracker, as seen in Figure 1. For addi-
tional details on this project, please see our project page at



http://stanford.edu/∼davheld/anytime tracking.html.

II. RELATED WORK

Tracking using 3D data has been an important challenge
for many years. Traditionally, trackers that have depth data
available have discarded almost all of the 3D information,
representing an object either by its centroid [11, 8] or by the
center of a bounding box [10, 1, 25] wrapped in a Kalman
filter. Although these are computationally efficient approaches,
they are not very accurate.

Another method is to fit a 2D rectangular object model to
the point cloud of the tracked object [18]. This method is
designed for tracking objects that have a roughly rectangular
shape, such as cars, and thus cannot be used as a generic multi-
purpose object tracker. The model in [18] relies on detecting
the corner of the car in order to position the rectangular model,
whereas [30, 3] also handle the case where only one side of
the car is visible. Our model is more general, in that it uses
the full 3D shape and does not assume that the tracked object
is rectangular or any other pre-specified shape.

To make use of the full 3D shape of the tracked object,
some trackers have attempted to align the object’s point clouds
using ICP and its variants [5, 14]. Such trackers use a local
hill-climbing approach to iteratively improve an alignment of
two point clouds. However, these approaches depend heavily
on starting from a good initial alignment, and their accuracy
degrades when the initialization is not close to the true
alignment, as has been shown in [17] and [6].

Grid-based methods are more common in SLAM sys-
tems [24] than in tracking, presumably because of the com-
putational issues involved in using fine grids. Our method
enables a fine grid to be used for real-time tracking by using
a coarse-to-fine sampling with annealed dynamic histograms.
A related, though much slower and less accurate, method was
used in Held et al. [6]. This general approach to tracking is
also related to the methods used in various multi-resolution
grid-based SLAM systems [2, 16, 17, 13, 22, 4].

Our method of annealed dynamic histograms is related
to the deterministic annealing methods for optimization. In
deterministic annealing, an optimum is found for an approxi-
mate distribution, and the distribution is gradually annealed
as the optimal solution is refined [20]. Related methods
known as “shaping” have been used in reinforcement learning,
starting with an easier task and progressing to increasingly
difficult tasks [19, 9]. This class of methods is also known as
“graduated optimization” and has been applied to the related
problem of image alignment [31]. In contrast, our goal is not
optimization but rather to estimate the posterior distribution
over velocities for a tracked object. In a general sense, our
method is similar in that we start by sampling from an
approximation to the posterior distribution and then we refine
our approximation over time.

Our method differs from previous tracking approaches in
that we globally explore the state space in real-time, as
opposed to ICP and similar methods which perform hill-
climbing from a given initialization. We also combine 3D

shape, color, and motion information, unlike standard ICP
and scan-matching techniques that use 3D shape alone. Our
method is general and can robustly track moving objects in
real-time, despite heavy occlusions or viewpoint changes that
can occur in real-world tracking scenarios.

III. TRACKING PIPELINE

As a pre-processing step, we use a point-cloud based
segmentation and data association algorithm, which segments
objects from the background into clusters and associates
these object clusters between successive time frames [27].
Our tracking method then estimates the velocity of each
of the pre-segmented tracked objects. We introduce a new
technique called annealed dynamic histograms to globally
explore the search space in real-time. We start by sampling
the state space with a coarse grid, and for each sample, we
compute the probability of the state using the model described
in Section IV. We then subdivide some of the grid cells,
as described in Section V, to refine our distribution. Over
time, our distribution becomes increasingly accurate. After
the desired runtime or tracking resolution, the tracker can be
stopped, at which point the current posterior distribution over
velocities can be returned.

IV. PROBABILISTIC MODEL

Below we describe the probabilistic model that we use for
tracking. In Section V we will describe how we use this
model as part of our annealed dynamic histogram framework.
Finally, in Section VI we add color-matching probabilities to
our model. However, the model that we describe here can also
be used if no color information is available.

The Dynamic Bayesian Network upon which our model
is built is shown in Figure 2. The position and velocity of
the tracked object are represented by the state variable xt.
We assume that the rotational velocity of the tracked object
is small (relative to the frame rate of the sensor), which is
often the case for people, bikes, and cars moving in urban
settings. After obtaining the posterior over translation, we can
optionally search over rotation, as described in Section V-D.
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Fig. 2. Dynamic Bayesian Network representing our model for a tracked
object.

We wish to use the 3D shape of the object being tracked in a
Bayesian probabilistic framework, which allows us to combine
the shape with information from color and motion. To do so,
we include in our model a latent surface variable st which
corresponds to a set of points sampled from the visible surface

http://stanford.edu/~davheld/anytime_tracking.html


of the tracked object. From these points, the actual sensor
measurements zt are drawn and observed. Because of sensor
noise, the observed measurements zt will not lie exactly on the
object surface and hence will not be exactly equal to st. This
process is illustrated in Figure 3. The measurement model for
our tracker will be described in Section IV-A.

Unlike ICP or a scan-matching algorithm, we also incorpo-
rate a motion model into our tracker. As we will show, adding
a motion model significantly increases tracking performance.
To build the motion model, we take all of the values for
p(xt | z1 . . . zt) from the previous frame and fit a multi-
variate Gaussian to the set of probabilities. Once a Gaussian
approximation to the posterior is obtained, the result is used in
the standard constant velocity model of a Kalman filter [29].

A. Measurement Model Derivation

We now derive the measurement model using the Dynamic
Bayes Net from Figure 2. We can first write our measurement
model using the joint distribution as

p(zt | xt, zt−1) =

∫∫
p(zt, st, st−1 | xt, zt−1) dst−1 dst

Using the independence assumptions from the model in Fig-
ure 2, we can expand the term inside the integral as

p(zt, st, st−1 | xt, zt−1)

= p(zt | st, xt) p(st | st−1) p(st−1 | zt−1)

= η p(zt | st, xt) p(st | st−1) p(zt−1 | st−1) p(st−1) (1)

where η is a normalization constant. Note that we have used
the conditional independence assumption p(st−1 | xt, zt−1) =
p(st−1 | zt−1), which is not encoded in the graphical model
from Figure 2. This independence assumption holds because
at each time step t we choose the centroid of zt−1 to be the
origin of the coordinate system for our state variable. The
position component of the state thus measures how far the
tracked object has moved since the previous observation.

To compute the terms in equation 1, we first consider that,
at each time frame t, a new set of points zt is sampled
independently from the surface of the object, st, as shown
in Figure 3. This process is modeled by a Gaussian, with
covariance given by the sensor noise Σe.

We also suppose that every point st,j ∈ st could have
either been generated from a previously visible portion of the
object surface at time t − 1 or from a previously occluded
portion. This formulation enables our method to be robust to
changes in viewpoint and occlusions. If p(V ) represents the
prior probability of sampling from a previously visible surface,
then we can write:

p(st,j | st−1) =p(V ) p(st,j | st−1, V ) +

p(¬V ) p(st,j | st−1,¬V ) (2)

We model p(st,j | st−1, V ) as a Gaussian, st,j ∼
N (st−1,i,Σr) where Σr models the variance resulting from
the sensor resolution as well as from object deformations, and
st−1,i is the nearest corresponding (latent) surface point from
the previous frame.

st-1

zt

st

zt-1

Fig. 3. Illustration of the sampling of surface points st and measurement
points zt. Because of sensor noise, the measurements zt will not lie exactly
on the surface. Further, because of occlusions, changes in viewpoint, defor-
mations, and random sampling, the visible surface points change from st−1

to st

The term p(st,j | st−1,¬V ) represents the probability that
st,j was sampled given that the surface from which it is
sampled was previously occluded. If we have an occlusion
model for the previous frame, we can use this model to
compute this probability. Otherwise, we can assume that any
region that was not previously visible was previously occluded.
We can generically write this as

p(st,j | st−1,¬V ) = k1 (k2 − p(st,j | st−1, V ))

for some constants k1 and k2. We can now simplify equation 2
as

p(st,j | st−1) = η (p(st,j | st−1, V ) + k3)

where η is a normalization constant and k3 acts as a smoothing
factor.

Because we model each term in equation 1 as either a
Gaussian or a Gaussian plus a constant, we can view this
expression as a series of convolutions. The convolution of two
Gaussians is simply another Gaussian, so our measurement
model simplifies down to

p(zt | xt, zt−1)

= η

 ∏
zj∈zt

exp

(
−1

2
(zj − z̄i)T Σ−1(zj − z̄i)

)
+ k

 (3)

where η is a normalization constant and k is a smoothing
factor. The covariance matrix Σ is given by Σ = 2Σe + Σr,
with covariance terms for Σe due to sensor noise and Σr due
to the sensor resolution. To perform this computation, we first
shift the previous points zt−1 by the proposed velocity xt to
obtain the shifted points z̄t−1. Then, for each point zj in the
current frame, we find the corresponding nearest shifted point
z̄i ∈ z̄t−1. Given these correspondences, the measurement
model can then be computed using equation 3.

In practice, the measurement model is quickly computed
by using a kd-tree to look up the nearest-neighbor for each
point. We also divide the space into a grid and cache the log
probability for each grid cell. Thus, for each grid-cell we only
perform a single kd-tree lookup, and afterwards we simply



perform a quick table lookup of the cached result. In our
implementation, we set the discretization of the measurement
grid equal to the state-space sampling resolution (described in
Section V).

Our model is general and can be used to track objects
moving in three dimensions. However, objects that we are
interested in (people, bikes, and cars) are confined to move
along the ground surface. Thus, to speed up our method, we
assume that tracked objects exhibit minimal vertical motion
within the frame rate of the sensor. Our state space thus only
models motion along the ground surface. This change results
in a significant speedup of our method, with minimal effect
on the accuracy. For environments in which this assumption
is invalid, the full three-dimensional tracker may be used, or
one may incorporate an elevation map.

V. ANNEALED DYNAMIC HISTOGRAMS

Using the techniques described above, the measurement
model and motion model probabilities are relatively quick to
compute. However, we must compute these probabilities for
every state xt considered. If we densely sample the state space,
then there will be a large number of computations to perform,
rendering this method too slow for real-time use. In order to
enable our method to globally explore the state space in real-
time, we introduce a new technique called annealed dynamic
histograms, which we will explain below.

A. Derivation

Our overall approach to dynamic histograms can be visual-
ized in Figure 4. We start by coarsely dividing the state space
into grid cells and computing the probability p(xt|z1 . . . zt)
for each cell. We then recursively expand some of the cells,
subdividing each cell into k sub-cells. We now derive a method
for deciding which cells to divide and for computing the
probability of each of the new sub-cells.

Fig. 4. We decompose the state space using annealed dynamic histograms.
Here we show the dynamic decomposition, starting from a coarse sampling
on the left and refining the distribution over time.

The first step is to divide the state space into a coarse grid.
We next subdivide some of the cells into k sub-cells, based
on a criteria that we will establish. Let R be the (possibly
non-contiguous) set of all cells that we choose to subdivide
into sub-cells ci. We can compute the discrete probability of

the sub-cell ci ∈ R as follows:

p(ci) = p(ci ∩R)

= p(ci | R) p(R)

=
p(xi | z1 . . . zt)|ci|∑

j∈R p(xj | z1 . . . zt)|ci|
p(R)

= η p(xi | z1 . . . zt) p(R)

where |ci| is the volume of sub-cell ci. We thus have the
property that

∑
i∈R p(ci) = p(R). The key here is that the

normalization constant η depends only on the other sub-cells
in region R. Thus, the probability values of all cells outside
of region R are unaffected by this computation.

We can now derive a criteria for choosing which cells to
divide, based on minimizing the KL-divergence between our
histogram and the true posterior. Suppose distribution B is
the current estimated distribution before we divide a given
grid cell, and distribution A is the new estimated distribution
after we divide the grid cell into k sub-cells. In distribution
A, the k new sub-cells can each take on separate probabilities,
allowing us to more accurately approximate the true posterior.
The KL-divergence between distributions A and B measures
the difference between the old, more coarse approximation
to the posterior and the new, improved approximation to the
posterior. The size of the KL-divergence gives a measure of
how much we can improve our approximation to the posterior
by dividing this grid cell.

Specifically, suppose that we have a cell whose discrete
probability is Pi, and we are deciding whether to divide
this cell. Before dividing, we can view the cell as having
k sub-cells, each of whose probability is constrained to be
Pi/k. After dividing, each of the sub-cells can take on a new
probability pj , with the constraint that

∑k
j=1 pj = Pi. This

situation is illustrated in Figure 5.

Fig. 5. Before dividing a cell, we can view it as having sub-cells whose
probabilities are all constrained to be equal. After dividing, each of the sub-
cells can take on its own probability.

The KL-divergence between these two distributions can be
computed as

DKL(A||B) =
k∑

j=1

pj ln

(
pj
Pi/k

)
where B is the distribution before dividing and A is the
distribution after dividing. The KL-divergence will obtain its
maximum value if pj′ = Pi for some j′ and pj = 0 for all



j 6= j′. In this case, we have

DKL(A||B) = Pi ln k (4)

If the computation for each of the k sub-cells takes t
seconds, then the maximum KL-divergence per second is then
equal to Pi ln k/(k t). If our goal is to find the histogram that
matches as closely as possible to the true posterior, then we
should simply divide all cells whose probability Pi exceeds
some threshold pmin. Similarly, to achieve the maximum
benefit per unit time, we should choose k to be as small as
possible. For a histogram in d dimensions, we use k = 3d,
splitting cells into thirds along each dimension.

B. Annealing

Initially, when we sample the state space at a very coarse
resolution, we do not expect to find a good alignment between
the previous frame and the current frame for the tracked
object. The sampling histogram (shown in Figure 4) introduces
another source of error into our model. We thus increase
the variance of the measurement model Gaussian by some
amount Σg , proportional to the resolution of the state-space
sampling. Our measurement model variance now becomes
Σ = 2Σe + Σr + Σg . As we sample regions of the state space
at a higher resolution, as shown in Figure 4, Σg decreases to
0. The measurement model is thus naturally annealed as we
refine our sampling of the state space, motivating the name for
our method of “annealed dynamic histograms.” The complete
method can then be implemented as shown in Algorithm 1.

C. Using the Tracked Estimate

The tracker can return information about the tracked object’s
velocity in any format, as requested by the planner or some
other component of the system. For example, to minimize the
RMS error, as in Section VIII-B, we return the mean of the
posterior. On the other hand, to build accurate object models,
as in Section VIII-C, we use the mode of the distribution.
A simple planner might request either the mean or the mode
of the posterior distribution, as well as the variance. A more
sophisticated planner can make use of the entire tracked
probability histogram, in the form of a density tree [28].

D. Estimating Rotation

For some applications, the rotation of the tracked object
might need to be estimated in addition to the translation. To
estimate the rotation, we first find the mode of the posterior
distribution over the translation. We then perform coordinate
descent in each rotation axis, holding translation fixed. Based
on the application, we can search over yaw only, or we can also
search over roll and pitch. Because we are searching separately
over each axis of rotation, this optimization is relatively quick.
We incorporate a search over rotation when we evaluate our
tracker by building 3D object models in Section VIII-C.

Input : Initial coarse tracking hypotheses H0, initial
sampling resolution g0, desired sampling
resolution gdes

Output: A set of cells ci and probabilities p(ci)
Hnew ← H0, g ← g0, p(R)← 1;
while g > gdes do

Σg ← gI;
Σ← 2Σe + Σr + Σg;
/* Compute probability of velocities */

for each cell ci ∈ Hnew do
x̂t,i = center of cell ci;
Compute p(zt | x̂t,i, zt−1) from equation 3;
Compute p(x̂t,i | z1 . . . zt−1) from motion model;

p̃(x̂t,i | z1 . . . zt)← p(zt | x̂t,i, zt−1) p(x̂t,i |
z1 . . . zt−1); // Unnormalized probability

end
/* Normalize probabilities */

η ←
∑

ci∈Hnew
p̃(x̂t,i | z1 . . . zt);

for each cell ci ∈ Hnew do
p(ci)← η p̃(x̂t,i | z1 . . . zt) p(R)

end
/* Finely sample high probability regions */

Hnew = ∅;
for each cell with p(ci) > pmin do

Subdivide cell ci by k along each dimension and
add to Hnew;

end
p(R)←

∑
ci∈Hnew

p(ci);
g ← g/k;

end
Algorithm 1: ADH Tracker

VI. ADDING COLOR

A. Learning color models

Our laser-based motion tracking algorithm naturally lends
itself to augmentation with simultaneous data from a tradi-
tional 2D video camera. To leverage color in our probabilistic
model, we learn the probability distribution over color for
correctly aligned points. To do so, we build a large dataset
of correspondences (with a 5 cm maximum distance) between
colored laser returns from one laser spin and each of their
spatially nearest points from the subsequent spin, aligned
using our recorded ego motion. We then build a normalized
histogram of the differences in color values between each point
and its closest neighbor from the next spin. The difference
histograms we obtain closely follow a Laplacian distribution,
as expected [7, 26, 15].

In theory, we could incorporate multiple color channels into
our model. However, such a model would require us to learn
the covariances between different color channels. Instead, we
simplify the model by incorporating just a single color channel
(blue), chosen using a hold-out validation set. Although adding
other color channels could provide additional benefit, we show
improved tracking performance with just one color channel



alone.

B. Tracking with color

We can now incorporate the chosen color distribution into
the measurement model from Section IV-A. For any potential
correspondence, there is some probability p(C) that the colors
match, and some probability p(¬C) that the colors do not
match due to changes in lighting, lens flare, etc. We can then
model the probability of this correspondence as a product of
spatial and color probabilities:

p(st,j | st−1, V ) = ps(st,j | st−1, V )pc(st,j | st−1, V )

where the spatial probability is computed as a Gaussian as
before. We can model the color probability as

pc(st,j | st−1, V )

= p(C) p(st,j | st−1, V, C) + p(¬C) p(st,j | st−1, V,¬C)

where p(st,j | st−1, V, C) is the learned color model
distribution (parameterized as a Laplacian), and p(st,j |
st−1, V,¬C) = 1/255 is the prior probability of a point having
any given color. We can then use equation 2 to compute the
measurement model probability.

When we are coarsely sampling the state space (see Sec-
tion V), we do not initially expect the colors to match very
well. Therefore, we set p(C) to be a function of the sampling
resolution r, as

p(C) = pc exp

(
−r2

2σ2
c

)
.

where σc is a parameter that controls the rate at which p(C)
decreases with increasing resolution. As we sample more
finely, p(C) increases until p(C) = pc when r = 0, modeling
that we expect colors to match more often at a finer sampling
resolution.

VII. SYSTEM

We obtain the 3D point cloud used for tracking with a
Velodyne HDL-64E S2 LIDAR mounted on a vehicle. The
Velodyne has 64 beams that rotate at 10 Hz, returning 100,000
points per 360 degree rotation over a vertical range of 26.8
degrees. We color these points with high-resolution camera
images obtained from 5 Point Grey Ladybug-3 RGB cameras,
which use fish-eye lenses to capture 1600x1200 images at
10 Hz. The vehicle pose is obtained using the Applanix
POS-LV 420 inertial GPS navigation system. Experiments
were performed single-threaded on a 2.8 GHz Intel Core i7
processor.

VIII. RESULTS

In order to measure the robustness of our tracker, we must
evaluate on a large number of tracked objects. Therefore,
we cannot use the evaluation methods of [12] and [14], in
which a small number of cars are equipped with a measuring
apparatus. Instead, we propose two methods to automatically
evaluate our tracking velocity estimates on a large number of
tracked objects. First, using the evaluation method of Held

et al. [6], we track parked cars in a local reference frame in
which they appear to be moving. This allows us to directly
measure the accuracy of our velocity estimates. Second, we
build models of tracked objects by aligning the point clouds
based on our estimated velocity. We then compute a crispness
score, as in Sheehan et al. [23], to compare how correctly
the models were constructed. We use this method to evaluate
our tracking accuracy on a large number of people, bikes, and
moving cars. Thus, using these two evaluation methods, we
are able to determine the robustness of our tracker on a wide
variety of objects of different types and in different conditions.

A. Choosing parameters

Parameters for our model, as well as parameters for the
baseline methods, were chosen by performing a grid search
using a training set that is completely separate from our test
set. The training set consists of 13.6 minutes of logged data,
during which time we drive past a total of 622 parked cars.
Using this training set, the final parameters chosen for our
system are as follows, for an object with a horizontal sensor
resolution of r meters and a state-space sampling resolution is
g: k = 0.8, Σ′e = 2Σe = (0.03 m)2I, Σr = (r/2)I, and Σg = gI,
where I is the 3x3 identity matrix. For the dynamic histogram,
we initialize from a coarse resolution of 1 m, and we continue
until the resolution of the resulting histogram is less than r,
with pmin = 10−4. For our color model, we have pc = 0.05
and σc = 1 m. Because our data contains many frames with
lens flare as well as underexposed frames, our system learns to
assign a low probability to color matches. Our learned color
distribution for aligned points is given by a Laplacian with
parameter b = 13.9. For all methods tested, we downsample
the current frame’s point cloud to no more than 150 points
and the previous frame to 2000 points.

B. Evaluation: Relative Reference Frame

The first approach we take to quantitatively evaluate the
results of our tracker is to track parked cars in a local reference
frame in which they appear to be moving, as is done in [6].
In our 6.6 minute test dataset, we drive past 557 parked cars.
However, in a local reference frame, each of these parked
cars appears to be moving in the reverse direction of our own
motion. Because we have logged our own velocity, we can
compute the ground-truth relative velocity of a parked vehicle
in this local reference frame and quantitatively evaluate the
precision of our tracking velocity estimates. Furthermore, as
we drive past each car, the viewpoint and occlusions change
over time. We are thus able to evaluate our method’s response
to many real-world challenges associated with tracking. We
will show in Section VIII-C further quantitative results when
tracking moving objects of different classes (cars, bikes, and
pedestrians), to demonstrate that our method generalizes across
object types.

We ignore tracks that contain major undersegmentation
issues, in which the tracked object is segmented together
with another object. We thus filter out 7% of our initial
tracks based on segmentation issues, leaving us with 515



properly segmented cars to track. We do not filter out tracks in
which the tracked object has been oversegmented into multiple
pieces.
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Fig. 6. RMS error vs runtime of our method compared to several baseline
methods. Note that the method “Kalman ICP with Kalman Init” is a novel
baseline method that we present in this paper.

To measure robustness, we compute the RMS tracking error
for each method, and the results are shown in Figure 6. First,
we compare to a Kalman filter with a measurement model
given by the centroid of the tracked points. Because of its
speed and ease of implementation, this is a popular method,
used in Levinson et al. [11] and Kaestner et al. [8]. As can be
seen in Figure 6, this method is extremely fast, completing in
0.2 milliseconds. The method is also reasonable in accuracy,
producing an RMS error of 0.83 m/s across the 515 cars in
our test set.

Next, we compare to a number of variants of ICP, the
iterative closest point method. First, we compare to the basic
point-to-point ICP algorithm, using the implementation from
PCL [21]. This basic method is used for tracking by Feldman
et al. [5]. We initialize ICP by aligning the centroids of the
tracked object. We run ICP for 1, 5, 10, 20, 50, and 100
iterations, and the results are shown in Figure 6. It is clear
from Figure 6 that the basic ICP algorithm does not perform
well for tracking, with an RMS error 16% worse than that
of a simple Kalman filter. As we will show, this decrease in
accuracy is because the standard ICP algorithm does not make
use of a motion model, which is crucial for robust tracking.

We next compare to a Kalman filter with ICP used as the
measurement model. Combining ICP with the motion model in
a Kalman filter makes the method much more robust to failures
of ICP. Because ICP is dependent on its initialization, we test
three different strategies to initialize this method. First, we try
initializing ICP by aligning the centroids of the tracked object,
as we did above. We also try initializing ICP using the mean
prediction from the motion model, as was done in Moosmann
and Stiller [14]. Last, we try first running the centroid through
a Kalman filter and using the output as the initialization for
ICP.

Figure 6 compares these three methods. Initializing using
the mean prediction from the motion model is not shown on
this plot because the performance is significantly worse than

the other methods tested, giving an RMS error of 2.6 m/s. An
analysis of why this occurs reveals that this method performs
well when the tracked object is moving at a relatively constant
velocity, but it performs poorly when the object is quickly
accelerating or decelerating. Thus, initializing ICP with the
mean prediction of the motion model is a poor choice for
tracking objects that can quickly change velocity.

The method of using a Kalman filter with ICP, initialized
by aligning the centroids, performs reasonably, with an im-
provement of 17% over a simple Kalman filter. Finally, if
we run the centroid through a Kalman filter and use the
output as the initialization for ICP (and use the result as the
measurement model for another Kalman filter), then we get the
best performance of the ICP baseline methods that were tested,
with an RMS error of 0.63 m/s. To the best of our knowledge,
this is also a novel baseline method that has not been tested
previously in the tracking literature. However, all versions of
ICP suffer from the problem of choosing a good initialization.
Our method, in contrast to all of the ICP methods, is more
robust in that does not depend on the initialization.

We also compare to the method of Held et al. [6], without
using color. This method performs poorly compared to our
baselines, giving an RMS error of 1.04 m/s. The main reason
for this poor performance is that this method does not make
use of a motion model. As has already been shown, adding
a motion model makes a significant difference when tracking
moving objects. Their method also takes an average of 86
milliseconds per frame and hence is probably not appropriate
for a real-time system.
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Fig. 7. Accuracy vs mean runtime using annealed dynamic histograms (blue)
vs densely sampling the state space (red).

Our method achieves an accuracy of 0.58 m/s after running
for just 0.7 milliseconds. Even at this minimum runtime, our
method does 31% better than a simple Kalman filter and 10%
better than all of the baseline methods of similar speed, as
shown in Figure 6. If our method is allowed to run for 1.8
milliseconds, our method achieves an accuracy of 0.56 m/s,
which is 11% better than all baseline methods that were tested.
Note also that this is an average over 515 tracked vehicles, and
that the tracking accuracy varies as a function of distance. For
example, for objects within 5 m, our method achieves an RMS
error of 0.15 m/s, whereas for objects 70 m away, our method
achieves an RMS error of 1.8 m/s.

If color images are available, then we can incorporate color
into our measurement model, as described in Section VI. With



Fig. 8. Models obtained by tracking objects. The top row is the individual
frame of the tracked object with the highest number of points. The bottom
row is the model created by our tracker. Note that we are only performing
frame-to-frame alignment when building these models.

the addition of color, our RMS error decreases by an additional
7%, thus achieving an RMS error of 0.52 m/s. Note that many
frames in our test set contained heavy shadows or lens flare.
We thus except color to make an even bigger difference when
lens flare and similar exposure problems are avoided.

One of the novel additions of our method is the use of
annealed dynamic histograms to speed up our tracker. In
Figure 7, we show the decrease in speed if we were to densely
sample the search space. Densely sampling is about 12 to 33
times slower for approximately the same level of accuracy.

C. Evaluation: Model Crispness

To evaluate the accuracy of our tracking on a variety of
moving objects, we build models of tracked objects by aligning
the point clouds based on our estimated velocity. These models
can be visualized in Figures 1 and 8. For each model, we
compute a crispness score [23] to evaluate how correctly the
models were constructed; an accurate model corresponds to
an accurately tracked object. As can be seen in Figure 9, if
the tracking is not accurate, the resulting model will be very
noisy.

For each tracked object, we compute a crispness score as

1

T 2

T∑
i=1

T∑
j=1

1

ni

ni∑
k=1

G(xk − x̂k, 2Σ)

where T is the number of frames for which the object is
observed, ni is the number of points in the ith frame, x̂k is the
point in frame j nearest to xk in frame i, G is a multi-variate
Gaussian, and Σ controls the penalty for matches of different
distances. Our crispness score has a minimum value of 0 and
a maximum value of 1.

Using the crispness score, we evaluate our tracker on 135
people, 79 bikes, and 63 moving cars. For this evaluation,
we use two test sets that were recorded 1 month earlier and
6 months later than the test set used in Section VIII-B. In
addition, the test set for the previous section was recorded
around sundown, whereas the test sets in this section were
recorded closer to noon. By testing during different seasons
and times of day, we further demonstrate our robustness to
changes in location, season, and lighting.

Table I shows the crispness scores for tracking people,
bikes, and moving cars. We evaluate our our method as well

Fig. 9. A comparison of the models built with different tracking methods.
Left: Our Method. Right: Kalman ICP.

as two high performing baseline methods, selected based on
performance in Section VIII-B. When at least 100 points are
visible, our method outperforms all other methods across all
object classes. In Table I, only frames with at least 200 points
are used to compute the crispness score. The ICP-Kalman
method performs poorly on people and bikes, presumably due
to local minima. The centroid-based Kalman filter performs
reasonably well, but our method performs the best across all
object classes. This demonstrates that our method is robust to
the class and shape of the object being tracked.

TABLE I
CRISPNESS SCORES

Tracking
Method

Object Class

People Bikes Moving Cars

Kalman Filter 0.38 0.31 0.27
Kalman ICP 0.18 0.18 0.29
ADH 0.42 0.38 0.33

IX. CONCLUSION

We have introduced a new technique called annealed dy-
namic histograms to robustly track moving objects in real
time. We have demonstrated that combining information from
3D shape, color, and motion allows us to track objects much
more accurately than using only one or two of these cues.
We have also shown that grid-based methods can be made
both fast and accurate by annealing the measurement model
as we refine our distribution. This approach also allows us to
globally explore the search space, avoiding the local minima
of other approaches. For long-term autonomy in dynamic
environments, objects must be tracked under a wide variety of
lighting, viewpoint changes, and occlusions, so robust tracking
is crucial for safe operation.
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